Abstract

In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
    [CrossRef]
  2. P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
    [CrossRef]
  3. D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express14(21), 9896–9901 (2006).
    [CrossRef] [PubMed]
  4. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
    [CrossRef] [PubMed]
  5. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
    [CrossRef] [PubMed]
  6. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
    [CrossRef] [PubMed]
  7. S. Brasselet and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Phys.8(2), 165–179 (2007).
    [CrossRef]
  8. C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
    [CrossRef] [PubMed]
  9. C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
    [CrossRef] [PubMed]
  10. W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B.17(5), 763–781 (1984).
    [CrossRef]
  11. M. A. C. Nascimento, “The polarization dependence of 2-photon absorption rates for randomly oriented molecules,” Chem. Phys.74(1), 51–66 (1983).
    [CrossRef]
  12. E. A. Power, “Two-photon circular dichroism,” J. Chem. Phys.63(4), 1348–1350 (1975).
    [CrossRef]
  13. I. Tinoco, “Two-photon circular dichroism,” J. Chem. Phys.62(3), 1006–1009 (1975).
    [CrossRef]
  14. J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
    [CrossRef] [PubMed]
  15. J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
    [CrossRef] [PubMed]
  16. H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
    [CrossRef] [PubMed]
  17. L. De Boni, C. Toro, and F. E. Hernández, “Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules,” Opt. Lett.33(24), 2958–2960 (2008).
    [CrossRef] [PubMed]
  18. P. P. Markowicz, M. Samoca, J. Cerne, P. N. Prasad, A. Pucci, and G. Ruggeri, “Modified Z-scan techniques for investigations of nonlinear chiroptical effects,” Opt. Express12(21), 5209–5214 (2004).
    [CrossRef] [PubMed]
  19. C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
    [CrossRef]
  20. A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys.132(15), 154508 (2010).
    [CrossRef] [PubMed]
  21. Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett.36, 2982–2984 (2011).
  22. M. G. Vivas, D. L. Silva, L. De Boni, Y. Bretonniere, C. Andraud, F. Laibe-Darbour, J.-C. Mulatier, R. Zaleśny, W. Bartkowiak, S. Canuto, and C. R. Mendonca, are preparing a manuscript to be called “Experimental and theoretical study on the one- and two-photon absorption properties of a novel class of phenylacetylene and azoaromatic compounds”.
  23. D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
    [CrossRef]
  24. K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B1(1), 52–55 (1984).
    [CrossRef]
  25. M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
    [CrossRef] [PubMed]
  26. M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
    [CrossRef] [PubMed]
  27. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc.58(8), 1486–1493 (1936).
    [CrossRef]
  28. M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
    [CrossRef]
  29. K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
    [CrossRef] [PubMed]
  30. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
    [CrossRef]

2012 (1)

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

2011 (6)

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett.36, 2982–2984 (2011).

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
[CrossRef]

2010 (4)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys.132(15), 154508 (2010).
[CrossRef] [PubMed]

2009 (2)

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express17(4), 2143–2148 (2009).
[CrossRef] [PubMed]

2008 (2)

L. De Boni, C. Toro, and F. E. Hernández, “Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules,” Opt. Lett.33(24), 2958–2960 (2008).
[CrossRef] [PubMed]

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

2007 (2)

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

S. Brasselet and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Phys.8(2), 165–179 (2007).
[CrossRef]

2006 (2)

D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, “Rewritable optical data storage in azobenzene copolymers,” Opt. Express14(21), 9896–9901 (2006).
[CrossRef] [PubMed]

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

2004 (2)

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

P. P. Markowicz, M. Samoca, J. Cerne, P. N. Prasad, A. Pucci, and G. Ruggeri, “Modified Z-scan techniques for investigations of nonlinear chiroptical effects,” Opt. Express12(21), 5209–5214 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

1999 (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

1984 (2)

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B.17(5), 763–781 (1984).
[CrossRef]

K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B1(1), 52–55 (1984).
[CrossRef]

1983 (1)

M. A. C. Nascimento, “The polarization dependence of 2-photon absorption rates for randomly oriented molecules,” Chem. Phys.74(1), 51–66 (1983).
[CrossRef]

1975 (2)

E. A. Power, “Two-photon circular dichroism,” J. Chem. Phys.63(4), 1348–1350 (1975).
[CrossRef]

I. Tinoco, “Two-photon circular dichroism,” J. Chem. Phys.62(3), 1006–1009 (1975).
[CrossRef]

1936 (1)

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc.58(8), 1486–1493 (1936).
[CrossRef]

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Antonov, L.

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

Barbosa Neto, N. M.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Begue, N. J.

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

Boeglin, A.

Bondar, A.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

Bonin, K. D.

Botzung-Appert, E.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Brasselet, S.

S. Brasselet and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Phys.8(2), 165–179 (2007).
[CrossRef]

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Brédas, J. L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Bu, X. R.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Cerne, J.

Chauvat, D.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Cheng, Y.

Chichkov, B. N.

Cooper, T. M.

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

De Boni, L.

M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
[CrossRef]

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

L. De Boni, C. Toro, and F. E. Hernández, “Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules,” Opt. Lett.33(24), 2958–2960 (2008).
[CrossRef] [PubMed]

Diaz, C.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

Dorkenoo, K. D.

Drobizhev, M.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Farsari, M.

Feng, K.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Ferreira, P. H. D.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Firestein, S. J.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

Fort, A.

Fotakis, C.

Gindre, D.

Goswami, D.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys.132(15), 154508 (2010).
[CrossRef] [PubMed]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Heikal, A. A.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Hernandez, F. E.

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

Hernández, F. E.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

L. De Boni, C. Toro, and F. E. Hernández, “Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules,” Opt. Lett.33(24), 2958–2960 (2008).
[CrossRef] [PubMed]

Huang, X.

Ibanez, A.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Iwase, Y.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

Jarrosson, T.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Kamada, K.

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

Kondo, K.

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Lazar, J.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

Le Floc’h, V.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Lin, N.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

Lois, S.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Mager, L.

Marder, S. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Markowicz, P. P.

Marletta, A.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Matczyszyn, K.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

McCord-Maughon, D.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

McIlrath, T. J.

Meath, W. J.

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B.17(5), 763–781 (1984).
[CrossRef]

Mendonca, C. R.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
[CrossRef]

Meng, F.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Misoguti, L.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Mojzisova, H.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Nag, A.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys.132(15), 154508 (2010).
[CrossRef] [PubMed]

Nascimento, M. A. C.

M. A. C. Nascimento, “The polarization dependence of 2-photon absorption rates for randomly oriented molecules,” Chem. Phys.74(1), 51–66 (1983).
[CrossRef]

Nickel, E.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Nogueira, S. L.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Ohta, K.

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

Olesiak, J.

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Olesiak-Banska, J.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

Onsager, L.

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc.58(8), 1486–1493 (1936).
[CrossRef]

Ovsianikov, A.

Passier, R.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Piovesan, E.

Power, E. A.

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B.17(5), 763–781 (1984).
[CrossRef]

E. A. Power, “Two-photon circular dichroism,” J. Chem. Phys.63(4), 1348–1350 (1975).
[CrossRef]

Prasad, P. N.

Pucci, A.

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Rebane, A.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Rizzo, A.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

Roch, J.-F.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Röckel, H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Ruggeri, G.

Rumi, M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Samoca, M.

Santoro, F.

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

Serein-Spirau, F.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Shizhou, X.

Silva, D. L.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
[CrossRef]

Silva, H. S.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Silva, R. A.

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

Simpson, G. J.

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

Spangler, C. W.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Stepanenko, Y.

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

Tauc, P.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

Timr, S.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

Tinoco, I.

I. Tinoco, “Two-photon circular dichroism,” J. Chem. Phys.62(3), 1006–1009 (1975).
[CrossRef]

Toro, C.

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

L. De Boni, C. Toro, and F. E. Hernández, “Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules,” Opt. Lett.33(24), 2958–2960 (2008).
[CrossRef] [PubMed]

Treussart, F.

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Vamvakaki, M.

Vivas, M. G.

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

M. G. Vivas, E. Piovesan, D. L. Silva, T. M. Cooper, L. De Boni, and C. R. Mendonca, “Broadband three-photon absorption spectra of platinum acetylide complexes,” Opt. Mater. Express1(4), 700–710 (2011).
[CrossRef]

Wampler, R. D.

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

Wanapun, D.

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

Wang, C.

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Yamada, S.

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Zeng, Y.

Zhao, F.

Zielinski, M.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Zyss, J.

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

S. Brasselet and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Phys.8(2), 165–179 (2007).
[CrossRef]

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Biophys. J. (1)

H. Mojzisova, J. Olesiak, M. Zielinski, K. Matczyszyn, D. Chauvat, and J. Zyss, “Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA,” Biophys. J.97(8), 2348–2357 (2009).
[CrossRef] [PubMed]

Biopolymers (1)

J. Olesiak-Banska, H. Mojzisova, D. Chauvat, M. Zielinski, K. Matczyszyn, P. Tauc, and J. Zyss, “Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis,” Biopolymers95(6), 365–375 (2011).
[CrossRef] [PubMed]

C. R. Phys. (1)

S. Brasselet and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Phys.8(2), 165–179 (2007).
[CrossRef]

Chem. Phys. (1)

M. A. C. Nascimento, “The polarization dependence of 2-photon absorption rates for randomly oriented molecules,” Chem. Phys.74(1), 51–66 (1983).
[CrossRef]

Chem. Phys. Lett. (2)

D. Wanapun, R. D. Wampler, N. J. Begue, and G. J. Simpson, “Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study,” Chem. Phys. Lett.455(1-3), 6–12 (2008).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett.372(3-4), 386–393 (2003).
[CrossRef]

Chemistry (1)

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy,” Chemistry16(11), 3504–3509 (2010).
[CrossRef] [PubMed]

Chirality (1)

C. Toro, L. De Boni, N. Lin, F. Santoro, A. Rizzo, and F. E. Hernandez, “Two-photon absorption circular-linear dichroism on axial enantiomers,” Chirality22(1ESuppl 1), E202–E210 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc.58(8), 1486–1493 (1936).
[CrossRef]

J. Chem. Phys. (4)

K. Ohta, L. Antonov, S. Yamada, and K. Kamada, “Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules,” J. Chem. Phys.127(8), 084504 (2007).
[CrossRef] [PubMed]

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys.132(15), 154508 (2010).
[CrossRef] [PubMed]

E. A. Power, “Two-photon circular dichroism,” J. Chem. Phys.63(4), 1348–1350 (1975).
[CrossRef]

I. Tinoco, “Two-photon circular dichroism,” J. Chem. Phys.62(3), 1006–1009 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B. (1)

W. J. Meath and E. A. Power, “On the importance of permanent moments in multiphoton absorption using perturbation theory,” J. Phys. B.17(5), 763–781 (1984).
[CrossRef]

J. Phys. Chem. B (2)

M. Drobizhev, F. Meng, A. Rebane, Y. Stepanenko, E. Nickel, and C. W. Spangler, “Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways,” J. Phys. Chem. B110(20), 9802–9814 (2006).
[CrossRef] [PubMed]

M. G. Vivas, S. L. Nogueira, H. S. Silva, N. M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R. A. Silva, and C. R. Mendonca, “Linear and nonlinear optical properties of the thiophene/phenylene-based oligomer and polymer,” J. Phys. Chem. B115(44), 12687–12693 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (1)

C. Diaz, N. Lin, C. Toro, R. Passier, A. Rizzo, and F. E. Hernández, “The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality,” J. Phys. Chem. Lett.3(13), 1808–1813 (2012).
[CrossRef]

Nat. Methods (1)

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods8(8), 684–690 (2011).
[CrossRef] [PubMed]

Nature (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature398(6722), 51–54 (1999).
[CrossRef]

Opt. Commun. (1)

P. H. D. Ferreira, M. G. Vivas, D. L. Silva, L. Misoguti, K. Feng, X. R. Bu, and C. R. Mendonca, “Nonlinear spectrum effect on the coherent control of molecular systems,” Opt. Commun.284(13), 3433–3436 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett.92(20), 207401 (2004).
[CrossRef] [PubMed]

Science (1)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J. L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010).
[CrossRef] [PubMed]

Other (1)

M. G. Vivas, D. L. Silva, L. De Boni, Y. Bretonniere, C. Andraud, F. Laibe-Darbour, J.-C. Mulatier, R. Zaleśny, W. Bartkowiak, S. Canuto, and C. R. Mendonca, are preparing a manuscript to be called “Experimental and theoretical study on the one- and two-photon absorption properties of a novel class of phenylacetylene and azoaromatic compounds”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the chiral compound (YB3p25).

Fig. 2
Fig. 2

(a) Linear absorption spectrum of the YB3p25. (b) 2PA cross-section spectra with linearly (circles), right (squares) and left (up triangles) circularly polarized laser pulse and the solid line along it is the theoretical fitting obtained employing the sum-over-essential states approach.

Fig. 3
Fig. 3

Open-aperture Z-scan curves for YB3p25 with linearly (circles), left (up triangles) and right (squares) circularly polarized light. The solid line represents the fitting employing the Eq. (1).

Fig. 4
Fig. 4

(a) 2PA-CLD spectrum of the YB3p25 (diamonds). Solid and dashed lines represent the fit employing the Eq. (3) with and without the interference term, respectively. (b) Normalized transmittance change (log-log scale) as a function of laser irradiance showing the slope of approximately 1.0 for the LP and CP light beam. The inset shows the circular/linear 2PA ratio ( Ω CLD ) as a function of irradiance.

Fig. 5
Fig. 5

2 + 3 energy-level diagram with Δ μ ge 0 used in sum-over-essential states approach in order to model the 2PA-CLD spectrum (solid lines). There are two distinct transition pathways for 2PA in this system. The first path involves the difference between permanent dipole moment of the first excited and ground states (red arrows) while the second involve a real intermediate resonance (blue arrows) due to the detuning between the photon energy and the first excited state allowed by 1PA. Hollow arrows show the transition dipole moments.

Fig. 6
Fig. 6

(a) Experimental (squares) 2PA cross-section modulation for YB3p25 at 880 nm. The solid curve is the fitting of the experimental data using Eq. (5) with ε= 10 . (b) Simulations from Eq. (5) assuming distinct values for the angle between dipole moments ( ε ).

Tables (1)

Tables Icon

Table 1 Spectroscopic parameters used/obtained (highlight) in/from the sum-over-essential states approach adopting a 2 + 3 energy-level diagram, with ν=ω/2π .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T(z)= 1 π q o ( z,0 ) ln[ 1+ q o (z,0) e τ 2 ] dτ
q o =β I o L ( 1+( z 2 / z o 2 ) ) 1 ,
σ gf ( 2PA ) ( ω )= 2 30 ( 2π ) 5 ( nhc ) 2 L 4 { P( ε Δ μ ge μ ge ) | μ ge | 2 | Δ μ ge | 2 g e ( 2ω )+ ( D ) ω 2 ( ω ge ω ) 2 + Γ ge 2 ( ω ) ( P( ε μ ge μ ef ) | μ ge | 2 | μ ef | 2 ) g f ( 2ω )+ ( IR ) 2ω( ω ge ω ) [ ( ω ge ω ) 2 + Γ ge 2 ( ω ) ] ( P( cos( ε ) ) | μ ge | 2 | Δ μ ge || μ ef | ) g f ( 2ω ) ( QI ) }.
| μ ge,f | 2 g e,f = 3× 10 3 ln( 10 )hc ( 2π ) 2 N A n L 2 ξ e,f ( ω ) ω
σ 2PA ( ω )= σ 2PA LP ( ω )[ ( 1 cos 2 ( ε )+3 4 cos 2 ( ε )+2 ) cos 2 ( 2θ )+( cos 2 ( ε )+3 4 cos 2 ( ε )+2 ) ],

Metrics