Abstract

In this paper, we demonstrate a novel all-fiber current sensor using ordinary silica fiber. The sensor employs a fiber solenoid as a current sensor head, which improves the current sensitivity by allowing optical signals to traverse the sensor head repeatedly. Theory and experiment prove that the improvement in sensitivity increases periodically with the number of repetitions of optical signals circulating round the loop.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
    [CrossRef]
  2. Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
    [CrossRef]
  3. P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Dong, “Magneto-optical fiber sensor based on magnetic fluid,” Opt. Lett.37(3), 398–400 (2012).
    [CrossRef] [PubMed]
  4. P. R. Watekar, S. Ju, S. A. Kim, S. Jeong, Y. Kim, and W. T. Han, “Development of a highly sensitive compact sized optical fiber current sensor,” Opt. Express18(16), 17096–17105 (2010).
    [CrossRef] [PubMed]
  5. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express18(6), 5407–5412 (2010).
    [CrossRef] [PubMed]
  6. W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
    [CrossRef]
  7. R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
    [CrossRef]
  8. O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
    [CrossRef]
  9. C. Wang and S. T. Scherrer, “Fiber loop ringdown for physical sensor development: pressure sensor,” Appl. Opt.43(35), 6458–6464 (2004).
    [CrossRef] [PubMed]
  10. G. M. Li, Y. S. Qiu, S. Q. Chen, S. Liu, and Z. Y. Huang, “Multichannel-fiber ringdown sensor based on time-division multiplexing,” Opt. Lett.33(24), 3022–3024 (2008).
    [CrossRef] [PubMed]
  11. F. Maystre and A. Bertholds, “Magneto-optic current sensor using a helical-fiber Fabry-Perot resonator,” Opt. Lett.14(11), 587–589 (1989).
    [CrossRef] [PubMed]
  12. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol.20(2), 267–276 (2002).
    [CrossRef]
  13. C. Z. Tan and J. Arndt, “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids60(10), 1689–1692 (1999).
    [CrossRef]
  14. P. R. Watekar, H. Yang, S. Ju, and W. T. Han, “Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots,” Opt. Express17(5), 3157–3164 (2009).
    [CrossRef] [PubMed]
  15. P. Ripka, Magnetic Sensors and Magnetometers (Artech House, 2001), Chap. 6.

2012 (1)

2010 (2)

2009 (1)

2008 (1)

2007 (1)

Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
[CrossRef]

2004 (1)

2002 (1)

1999 (2)

C. Z. Tan and J. Arndt, “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids60(10), 1689–1692 (1999).
[CrossRef]

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

1996 (2)

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

1995 (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

1989 (1)

Andonovic, I.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Arndt, J.

C. Z. Tan and J. Arndt, “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids60(10), 1689–1692 (1999).
[CrossRef]

Bertholds, A.

Bohnert, K.

Brandle, H.

Chan, C. C.

Chen, L. H.

Chen, S. Q.

Cruden, A.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Dietrich, E.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Dong, L.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

Dong, X.

Eiselt, M.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Gabus, P.

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Graydon, O.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

Grosskopf, G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Han, W. T.

Huang, Z. Y.

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Jeong, S.

Jiang, S.

Jin, Y.

Ju, S.

Kim, S. A.

Kim, Y.

Kuller, L.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Laming, R. I.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

Langenhorst, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Lew, W. S.

Li, G. M.

Li, Q. B.

Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
[CrossRef]

Liew, H. F.

Liu, S.

Loh, W. H.

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

Ludwig, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Madden, W. I.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Marciante, J. R.

Maystre, F.

McDonald, J. R.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Michie, W. C.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Nehring, J.

Niewczas, P.

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Pieper, W.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Qiu, Y. S.

Scherrer, S. T.

Sun, L.

Tan, C. Z.

C. Z. Tan and J. Arndt, “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids60(10), 1689–1692 (1999).
[CrossRef]

Wang, C.

Wang, Z. P.

Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
[CrossRef]

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Watekar, P. R.

Weber, H. G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

Wong, W. C.

Wu, Q.

Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
[CrossRef]

Yang, H.

Zhang, Y.

Zu, P.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photon. Technol. Lett.8(1), 63–65 (1996).
[CrossRef]

J. Lightwave Technol. (2)

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol.20(2), 267–276 (2002).
[CrossRef]

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol.14(3), 324–335 (1996).
[CrossRef]

J. Phys. Chem. Solids (1)

C. Z. Tan and J. Arndt, “Wavelength dependence of the Faraday effect in glassy SiO2,” J. Phys. Chem. Solids60(10), 1689–1692 (1999).
[CrossRef]

Opt. Eng. (1)

W. I. Madden, W. C. Michie, A. Cruden, P. Niewczas, J. R. McDonald, and I. Andonovic, “Temperature compensation for optical current sensors,” Opt. Eng.38(10), 1699–1707 (1999).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

Z. P. Wang, Q. B. Li, and Q. Wu, “Effects of the temperature features of linear birefringence upon the sensitivity of a bulk glass current sensor,” Opt. Laser Technol.39(1), 8–12 (2007).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum.66(5), 3097–3111 (1995).
[CrossRef]

Other (1)

P. Ripka, Magnetic Sensors and Magnetometers (Artech House, 2001), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of an all-fiber current sensor based on FLRDS.

Fig. 2
Fig. 2

Intensity variations of light-pulses for currents of 0, 125 and 250 A passing through the sensor head. Results are taken from a Tektronix TDS3054B 500 digital oscilloscope.

Fig. 3
Fig. 3

Variation in the degree of polarization change ΔP versus the number of round trips K for (a) 50-turn and (b) 150-turn solenoids, respectively.

Fig. 4
Fig. 4

Comparison of the experimental and theoretical results of the relationship between ΔP and K for (a) 50-turn and (b) 150-turn solenoids, respectively.

Fig. 5
Fig. 5

Relationship between the variation in the degree of polarization △P and the current intensity I for (a) 50-turn and (b) 150-turn solenoids, respectively.

Fig. 6
Fig. 6

Current sensitivity S versus the number of round trips K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T H ¯ = T H K =[ cos( K φ 2 )+i δ φ sin( K φ 2 ) θ φ sin( K φ 2 ) θ φ sin( K φ 2 ) cos( K φ 2 )i δ φ sin( K φ 2 ) ]
P= I I I + I = 2 θ 2 φ 2 sin 2 ( K φ 2 )1
ΔP= 2 ( ε+2Ω ) 2 ϕ 2 sin 2 ( K ϕ 2 ) 2 ε 2 φ 2 sin 2 ( K φ 2 )
ΔP= 2K ε 3 Ω φ 3 sin( Kφ )+γ
γ8 εΩ+ Ω 2 ϕ 2 sin 2 ( K ϕ 2 )+2K ε 2 Ω 2 φ 5 ( φ 2 ε 2 )sin[ K( φ+ εΩ φ ) ]
S=| 2K ε 3 V N S φ 3 sin( Kφ ) |
{ S max 1.7938| K ε 3 ΩV N S φ 3 | ( Kφ0.6458Nπ ) S min =0 ( Kφ=(N1)π )
I max | ±1 2 ε 2 φ 2 sin 2 ( K φ 2 )+1 | 2Kε φ 3 3 sin(Kφ)V N S

Metrics