Abstract

We investigated the propagation dynamics of the Circular Airy Beams (CAB) with optical vortices (OVs) by numerical calculation. Comparing to the common CAB, the maximum intensity of CAB with vortices can be increased greatly at the focal plane and its focal intensity profile is doughnut-shaped when an on-axis vortex is imposed. The case for an off-axis OV and multiple OVs have been investigated as well. We demonstrate that two opposite OVs will annihilate exactly at the focal plane, with the focal intensity is highly increased.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett.35(23), 4045–4047 (2010).
    [CrossRef] [PubMed]
  2. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett.36(10), 1890–1892 (2011).
    [CrossRef] [PubMed]
  3. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett.36(10), 1842–1844 (2011).
    [CrossRef] [PubMed]
  4. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett.36(18), 3675–3677 (2011).
    [CrossRef] [PubMed]
  5. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A85(2), 023828 (2012).
    [CrossRef]
  6. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett.36(15), 2883–2885 (2011).
    [CrossRef] [PubMed]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  9. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
    [CrossRef] [PubMed]
  10. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  11. D. Rozas, C. T. Law, and G. A. Swartzlander., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B14(11), 3054–3065 (1997).
    [CrossRef]
  12. G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt.40(1), 73–87 (1993).
    [CrossRef]
  13. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett.35(23), 4075–4077 (2010).
    [CrossRef] [PubMed]
  14. F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
    [CrossRef]
  15. S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, “Propagation dynamics of optical vortices due to Gouy phase,” Opt. Express17(12), 9818–9827 (2009).
    [CrossRef] [PubMed]
  16. S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A18(1), 150–156 (2001).
    [CrossRef] [PubMed]
  17. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett.23(6), 409–411 (1998).
    [CrossRef] [PubMed]
  18. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A21(1), 53–58 (2004).
    [CrossRef] [PubMed]

2012 (1)

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A85(2), 023828 (2012).
[CrossRef]

2011 (4)

2010 (2)

2009 (1)

2005 (1)

F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
[CrossRef]

2004 (2)

2001 (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
[CrossRef] [PubMed]

S. A. Ponomarenko, “A class of partially coherent beams carrying optical vortices,” J. Opt. Soc. Am. A18(1), 150–156 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

1993 (1)

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

Barnett, S.

Baumann, S. M.

Chen, M.

Chen, W.

Chen, Z.

Chremmos, D.

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A85(2), 023828 (2012).
[CrossRef]

Chremmos, I.

Christodoulides, D. N.

Courtial, J.

Dai, H. T.

Efremidis, N. K.

Flossmann, F.

F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
[CrossRef]

Franke-Arnold, S.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Gahagan, K. T.

Galvez, E. J.

Gibson, G.

Guizar-Sicairos, M.

Gutiérrez-Vega, J. C.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Huang, M.

Huang, W.

Indebetouw, G.

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

Kalb, D. M.

Law, C. T.

Liu, Y. J.

Luo, D.

MacMillan, L. H.

Maier, M.

F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
[CrossRef]

Mills, M. S.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
[CrossRef] [PubMed]

Padgett, M.

Papazoglou, D. G.

Pas’ko, V.

Ponomarenko, S. A.

Prakash, J.

Rozas, D.

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Schwarz, U. T.

F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
[CrossRef]

Sun, X. W.

Swartzlander, G. A.

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
[CrossRef] [PubMed]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
[CrossRef] [PubMed]

Tzortzakis, S.

Vasnetsov, M.

Yu, L.

Zhang, P.

Zhang, Z.

Zhu, Z.

J. Mod. Opt. (1)

G. Indebetouw, “Optical Vortices and Their Propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. Flossmann, U. T. Schwarz, and M. Maier, “Propagation dynamics of optical vortices in Laguerre–Gaussian beams,” Opt. Commun.250(4-6), 218–230 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Phys. Rev. A (1)

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A85(2), 023828 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Propagation dynamics of CAB with an on-axis OV in r-z plane: (a) l = 2; (b) l = 1. (c) Propagation dynamics of common CAB.

Fig. 2
Fig. 2

Intensity profile of CAB with an on-axis OV at different transverse planes: (a) l = 2, at the initial plane; (b) l = 1, at the initial plane; (c) l = 2, at the focal plane; (d) l = 1, at the focal plane. (e) The intensity distribution at the initial plane. (f) The intensity distribution at the focal plane.

Fig. 3
Fig. 3

Abruptly autofocusing properties of CAB with an on-axis OV: (a) Im/I0 as a function of z; (b) radius of maximum light intensity as a function of z; (c) the maximum value of Im/I0 that the beams can reach during propagation for different values of r0.

Fig. 4
Fig. 4

Intensity profile of CAB with an off-axis OV with l = 1: (a) at the initial plane; (b) at the focal plane.

Fig. 5
Fig. 5

Intensity profiles and phase patterns of CAB with two OVs of ( + 1, + 1) at different positions: (a) intensity profile at the initial plane; (b) intensity profile at the focal plane; (c) phase pattern at the initial plane; (d) phase pattern at the focal plane.

Fig. 6
Fig. 6

Intensity profile and phase pattern of the CAB with two OVs of ( + 1,-1) at different positions: (a) intensity profile at the initial plane; (b) intensity profile at the focal plane; (c) phase pattern at the initial plane; (d) phase pattern at the focal plane.

Fig. 7
Fig. 7

Changes of Im/I0 of the CAB with two OVs of ( + 1,-1) during propagation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u(r,φ,z=0)=CAi( r 0 r w )exp(a r 0 r w ) (r e iφ r k e i φ k ) l ,
u(r,φ,z)=2π e ilφ 0 g ˜ (k) J l (2πkr) e 2iπz λ 2 k 2 k dk,
g ˜ (k)=2π 0 g(r) J l (2πkr)rdr.
u(r,φ,z=0)=CAi( r 0 r w )exp(a r 0 r w )(r e iφ + r k )(r e ±iφ r k ).

Metrics