Abstract

Tubular oxide optical microcavities with thin walls (< 100 nm) have been fabricated by releasing pre-stressed Y2O3/ZrO2 bi-layered nanomembranes. Optical characterization demonstrates strong whispering gallery modes with a high quality-factor and fine structures in the visible range, which are due to their high-index-contrast property (high refractive index in thin walls). Moreover, the strong axial light confinement observed in rolled-up circular nanomembranes well agrees with our theoretical calculation by using Mie scattering theory. Novel material design and superior optical resonant properties in such self-rolled micro-tubular cavities promise many potential applications e.g. in optofluidic sensing and lasing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993).
    [CrossRef]
  3. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
    [CrossRef]
  4. O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
    [CrossRef] [PubMed]
  5. A. Cho, “Nanotechnology. Pretty as you please, curling films turn themselves into nanodevices,” Science313(5784), 164–165 (2006).
    [CrossRef] [PubMed]
  6. R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
    [CrossRef]
  7. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
    [CrossRef]
  8. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
    [CrossRef] [PubMed]
  9. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006).
    [CrossRef] [PubMed]
  10. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
    [CrossRef] [PubMed]
  11. Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
    [CrossRef]
  12. G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
    [CrossRef]
  13. V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
    [CrossRef] [PubMed]
  14. G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
    [CrossRef] [PubMed]
  15. E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
    [CrossRef] [PubMed]
  16. E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
    [CrossRef] [PubMed]
  17. S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
    [CrossRef] [PubMed]
  18. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  19. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
    [CrossRef]
  20. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
    [CrossRef] [PubMed]
  21. T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
    [CrossRef]
  22. F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
    [CrossRef]
  23. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
    [CrossRef] [PubMed]
  24. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
    [CrossRef]
  25. F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
    [CrossRef] [PubMed]
  26. F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009).
    [CrossRef] [PubMed]
  27. C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
    [CrossRef]
  28. A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
    [CrossRef]
  29. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
    [CrossRef]
  30. A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
    [CrossRef] [PubMed]
  31. J. Niehusmann, A. Vörckel, PP. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861 (2004).
    [CrossRef] [PubMed]

2012 (1)

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

2011 (2)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

2010 (5)

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

2009 (5)

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express17(22), 19933–19939 (2009).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

2008 (3)

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

2007 (4)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

2006 (3)

A. Cho, “Nanotechnology. Pretty as you please, curling films turn themselves into nanodevices,” Science313(5784), 164–165 (2006).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (3)

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

2001 (1)

O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

1993 (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Benyoucef, M.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Bernardi, A.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Bolaños Quiñones, V. A.

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Boleininger, A.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

Bolivar, PP. H.

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Cho, A.

A. Cho, “Nanotechnology. Pretty as you please, curling films turn themselves into nanodevices,” Science313(5784), 164–165 (2006).
[CrossRef] [PubMed]

Chu, P. K.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

De Castro, A. C.

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

De Souza, M. F.

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

De Vicente, F. S.

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Degl'Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Dietrich, K.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Ding, F.

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Eberl, K.

O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

Fan, X.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

Féron, P.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Fu, R. K. Y.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Guenter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Hami, S.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

Harazim, S. M.

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

Heitmann, D.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Heitmann, J.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

Henschel, W.

Heyn, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

Heyn, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Hu, X. H.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Huang, G.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Huang, G. S.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Kipp, T.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Kiravittaya, S.

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Kurz, H.

Lake, T.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Li, F.

Liu, Z. W.

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Mei, Y.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Mei, Y. F.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Mendach, S.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

Mews, A.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Mi, Z.

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

Mi, Z. T.

Mönch, I.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Niehusmann, J.

Nunzi Conti, G.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

Oveys, H.

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Plumhof, J. D.

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Rastelli, A.

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

Rehberg, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

Reindl, T.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Sanchez, S.

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Schliehe, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Schmidt, O. G.

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical resonance tuning and polarization of thin-walled tubular microcavities,” Opt. Lett.34(15), 2345–2347 (2009).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

Scholz, R.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

Schultz, C. M.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

Schwaiger, S.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Siu Li, M.

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

Slusher, R. E.

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

Solovev, A. A.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Songmuang, R.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

Soria, S.

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Stemmann, A.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Strelow, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

Strelow, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Thurmer, D. J.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

Ureña, E. B.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vallance, C.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

Vicknesh, S.

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett.34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Vörckel, A.

Wahlbrink, T.

Weller, H.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Welsch, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

White, I. M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

Xiong, Z. Q.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Xu, C.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993).
[CrossRef]

Yi, L. X.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

Zacharias, M.

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

Zhan, T. R.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Zhao, F. Y.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Zi, J.

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

G. S. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. F. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4085–4090 (2008).
[CrossRef]

Anal. Chem. (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

T. R. Zhan, C. Xu, F. Y. Zhao, Z. Q. Xiong, X. H. Hu, G. S. Huang, Y. F. Mei, and J. Zi, “Optical resonances in tubular microcavities with subwavelength wall thicknesses,” Appl. Phys. Lett.99(21), 211104 (2011).
[CrossRef]

L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers,” Appl. Phys. Lett.81(22), 4248–4850 (2002).
[CrossRef]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett.94(14), 141901 (2009).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiOx microtube refractometer,” Appl. Phys. Lett.93(9), 094106 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett.90(9), 091905 (2007).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett.94(8), 081101 (2009).
[CrossRef]

Lab Chip (1)

S. M. Harazim, V. A. Bolaños Quiñones, S. Kiravittaya, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications,” Lab Chip12(15), 2649–2655 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev.4(3), 457–482 (2010).
[CrossRef]

Nano Lett. (3)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. F. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors,” Nano Lett.11(10), 4037–4042 (2011).
[CrossRef] [PubMed]

E. J. Smith, Z. W. Liu, Y. F. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett.10(1), 1–5 (2010).
[CrossRef] [PubMed]

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, “Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators,” Nano Lett.10(2), 627–631 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, R. Degl'Innocenti, and P. Guenter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Nature (2)

O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature410(6825), 168 (2001).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

C. Strelow, C. M. Schultz, H. Rehberg, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Three dimensionally confined optical modes in quantum-well microtube ring resonators,” Phys. Rev. B76(4), 045303 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett.96(7), 077403 (2006).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett.101(12), 127403 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

Y. Yamamoto and R. E. Slusher, “Optical processes in microcavities,” Phys. Today46(6), 66–73 (1993).
[CrossRef]

Quantum Electron. (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).
[CrossRef]

Science (1)

A. Cho, “Nanotechnology. Pretty as you please, curling films turn themselves into nanodevices,” Science313(5784), 164–165 (2006).
[CrossRef] [PubMed]

Sensors (Basel) (1)

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors (Basel)10(3), 1765–1781 (2010).
[CrossRef] [PubMed]

Thin Solid Films (1)

F. S. De Vicente, A. C. De Castro, M. F. De Souza, and M. Siu Li, “Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation,” Thin Solid Films418(2), 222–227 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic diagram illustrating the fabrication process of a rolled-up Y2O3/ZrO2 micro-tubular cavity. The inset shows the optical microscope image of a micro-tubular cavity (d~9 μm) rolled from a circular nanomembrane. (b) The upper part shows the radial field intensity distributions of the TE modes for the tubes with a low refractive index (SiO/SiO2, nc ≅ 1.10 in Ref. 12) and the lower part with a high refractive index (Y2O3/ZrO2, nc ≅ 1.68 in this work). The wall thickness of these two tubes was set to 100 nm. (c) The PL spectrum from the middle of a micro-tubular cavity rolled from a circular SiO/SiO2 nanomembrane coated with 30 nm HfO2 (nc ≅ 1.53 in Ref. 14). The inset shows the fine structure of a mode with azimuthal number m = 46. (d) The PL spectrum from the middle of a micro-tubular cavity rolled from a circular Y2O3/ZrO2 nanomembrane (Y2O3/ZrO2, nc ≅ 1.68 in this work). The inset shows the fine structure of a mode with azimuthal number m = 48.

Fig. 2
Fig. 2

(a) Color-coded PL intensity (experimental) as a function of the emission wavelength and the distance from the middle of the micro-tubular cavity. (b) Simulation result of the PL intensity distribution along the z axis.

Fig. 3
Fig. 3

(a) Schematic view of a circular nanomembrane with an outer diameter of L and thickness of T. (b) Cross section view perpendicular to the z axis of the rolled up micro-tube from circular nanomembrane as shown in (a). (c) Cross section of a planar waveguide of two regions with different thicknesses.

Fig. 4
Fig. 4

Plot of the rotation number N (black) and effective radius Rc (red) of the micro-tube as a function of axial position z. The micro-tube is rolled up from an Y2O3/ZrO2 bi-layer circular nanomembrane with a diameter of 80 μm and thickness of 33.5 nm, and has an outer diameter of 9.12 μm at the axial center.

Fig. 5
Fig. 5

(a) Rotation number (black) and wall thickness (red) along z direction. z = 0 indicates the center spot of the micro-tubular cavity. (b) Dispersion relationship of the guiding modes for the nanomembrane shown in Fig. 3(c). (c) kc and nc as functions of z for m = 48. Lines A and B in (b) correspond to the spots A and B in (a), respectively.

Fig. 6
Fig. 6

(a) The experimental (red circle) and simulated (blue star) results of Q-factor changes along the z axis for a resonant mode (m = 48). (b) The experimental (red circle) and simulated (blue star) results of Q-factor as a function of the wavelength (z = 0 μm).

Fig. 7
Fig. 7

Absorption spectrum of an Y2O3/ZrO2 bi-layer nanomembrane grown on a quartz substrate.

Fig. 8
Fig. 8

Comparison of the PL spectra from different positions of the micro-tubular cavity: (a) experimental data; (b) simulation results.

Fig. 9
Fig. 9

The PL spectra from the middle of a micro-tubular cavity rolled from circular (a)Y2O3/ZrO2 (nc ≅ 1.68), (b)Y2O3/TiO2 (nc ≅ 1.50), and (c)TiO2/TiO2 (nc ≅ 1.64) nanomembranes. (d) The PL spectrum from the middle of a micro-tubular cavity rolled from a circular SiO/SiO2 nanomembrane coated with 30 nm HfO2 (nc ≅ 1.10).

Fig. 10
Fig. 10

Optical microscope images of rolled-up circle (a) Y2O3/ZrO2 (nc ≅ 1.68), (b) Y2O3/TiO2 (nc ≅ 1.50), (c) TiO2/TiO2 (nc ≅ 1.64), and (d) SiO/SiO2 bilayer nanomembranes, of which the SiO/SiO2 self-rolled microtube coated with additional HfO2 coating layers on both inner and outer surfaces (nc ≅ 1.10).

Fig. 11
Fig. 11

(a) Measured PL spectra of the rolled up micro-tube with the same parameters as in Fig. 3. (b) Plot of peak position extracted from (a) as a function of number index.

Fig. 12
Fig. 12

Plot of nge,c as a function of the refractive index of the micro-tube wall nw for the micro-tube with the geometry parameters as in Fig. 4.

Tables (1)

Tables Icon

Table 1 Summary of the Materials for Fabrication of Tubular Optical Microcavities

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

1 n (r,θ,z) 2 2 E z (r,θ,z)= k 0 2 E z (r,θ,z)
E z (r,θ,z)=Φ(r,θ;z)Ψ(z)
1 n (r,θ;z) 2 r,φ 2 Φ(r,θ;z)= k c 2 Φ(r,θ;z)
1 n c 2 (z) 2 z 2 Ψ(z)+ k c 2 (z)Ψ(z)= k 0 2 Ψ(z)
n c ( L 1 + L 2 )= n c 2π R c =mλ
β c R c =m
R r (θ)= R 0 T×θ/2π
L z = θ=0 2πN [ R r (θ)T/2] dθ=2πN R 0 π N 2 T
R c =( L 1 + L 2 )/2π
β 1 L 1 + β 2 L 2 =2πm
β c R c =m
δ( β 1 /2π) L 1 +δ( β 2 /2π) L 2 =1
n ge,1 L 1 + n ge,2 L 2 = 1 n(1/ λ 0 )
n ge,c ×2π R c = 1 δ(1/ λ 0 )

Metrics