Abstract

Closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3, which can be synthesized in benzene by oxidizing bismuth metal either with BiCl3 or GaCl3, respectively, can absorb ultraviolet, visible and infrared lights, and luminesce superbroadly in near to mid infrared (NMIR) spectral range from 1 to 3μm at room temperature. Slight geometry change of the cluster can lead to the redshift of emission peak. These observations may initialize the development of Bi-based NMIR light sources with superbroad emission spectrum, where Bi53+ or similar polycationic species act as activators. Disputable crystal structure of Bi5(GaCl4)3 was redefined by classic Rietveld refining analysis. Consistent with crystallographic data, excitation, emission, temporal decay and time-resolved infrared emission spectra all reveal only one type of luminescent centers, viz. Bi53+, in the compound. And a new absorption of Bi53+ was found at ~1100nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal,” Opt. Express18(4), 3385–3391 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3385 .
    [CrossRef] [PubMed]
  2. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
    [CrossRef] [PubMed]
  3. A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express19(7), 6599–6608 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6599 .
    [CrossRef] [PubMed]
  4. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
    [CrossRef]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 .
    [CrossRef] [PubMed]
  6. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
    [CrossRef]
  7. I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
    [CrossRef]
  8. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
    [CrossRef] [PubMed]
  9. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852 .
    [CrossRef] [PubMed]
  10. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  12. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
    [CrossRef] [PubMed]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 .
    [CrossRef] [PubMed]
  16. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
    [CrossRef]
  17. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
    [CrossRef] [PubMed]
  18. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
    [CrossRef]
  19. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
    [CrossRef]
  20. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
    [CrossRef]
  21. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
    [CrossRef]
  22. Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
    [CrossRef]
  23. J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
    [CrossRef]
  24. A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
    [CrossRef]
  25. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
    [CrossRef]
  26. H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett.35(13), 2215–2217 (2010).
    [CrossRef] [PubMed]
  27. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
    [CrossRef]
  28. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
    [CrossRef]
  29. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 .
    [CrossRef] [PubMed]
  30. W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 .
    [CrossRef] [PubMed]
  31. N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
    [CrossRef]
  32. E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
    [CrossRef]
  33. H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011).
    [CrossRef] [PubMed]
  34. H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
    [CrossRef]
  35. S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
    [CrossRef]
  36. J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. the preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem.7(2), 198–208 (1968).
    [CrossRef]
  37. S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
    [CrossRef] [PubMed]
  38. R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
    [CrossRef]
  39. B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
    [CrossRef]
  40. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass,” Opt. Express20(7), 7212–7220 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7212 .
    [CrossRef] [PubMed]
  41. M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
    [CrossRef]
  42. S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
    [CrossRef]

2012 (3)

2011 (9)

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express19(7), 6599–6608 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6599 .
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

2010 (4)

2009 (8)

E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
[CrossRef]

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 .
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
[CrossRef] [PubMed]

2008 (2)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

2007 (2)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

2006 (2)

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

2005 (4)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 .
[CrossRef] [PubMed]

2004 (1)

1996 (1)

S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
[CrossRef] [PubMed]

1995 (2)

S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
[CrossRef]

S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
[CrossRef]

1986 (1)

B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
[CrossRef]

1978 (1)

R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
[CrossRef]

1968 (1)

J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. the preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem.7(2), 198–208 (1968).
[CrossRef]

1967 (1)

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
[CrossRef]

Ahmed, E.

E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
[CrossRef]

Akada, T.

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

Bai, Z.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Bengtsson, L.

S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
[CrossRef]

Bengtsson-Kloo, L.

S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
[CrossRef] [PubMed]

S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
[CrossRef]

Bigot, L.

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

Bjerrum, N. J.

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
[CrossRef]

Boston, C. R.

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
[CrossRef]

Brendel, C.

B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
[CrossRef]

Bufetov, I.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Bufetov, I. A.

Burns, R. C.

R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
[CrossRef]

Cao, R.

Chen, D.

Corbett, J.

J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. the preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem.7(2), 198–208 (1968).
[CrossRef]

Da, N.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Dianov, E.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Dianov, E. M.

Dong, G.

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 .
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Dong, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Dvoyrin, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Dvoyrin, V. V.

Fattakhova, Z.

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

Fattakhova, Z. T.

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Firstov, S. V.

Firstova, E. G.

Fischer, A.

M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
[CrossRef]

Fujii, M.

Gao, H.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011).
[CrossRef] [PubMed]

Gillespie, R. J.

R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
[CrossRef]

Gur'yanov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Haula, E. V.

Hayashi, S.

Hewak, D. W.

Hughes, M. A.

Il’ichev, N. N.

Jiang, X.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Kazin, P. E.

Khonthon, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

Kir’yanov, A. V.

Kloo, L.

M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
[CrossRef]

Kohler, D.

E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
[CrossRef]

Korchak, V.

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

Korchak, V. N.

Kozlova, N. S.

Krebs, B.

B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
[CrossRef]

Krolikowski, S.

Levchenko, A. E.

Li, H.

Li, J.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Lindsjö, M.

M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
[CrossRef]

Liu, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Luk, W.-C.

R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
[CrossRef]

Ma, Z.

Mashinsky, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Mashinsky, V. M.

Melkumov, M. A.

Meng, X.

Miwa, Y.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett.35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

Morimoto, S.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

Mummert, M.

B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
[CrossRef]

Ohishi, Y.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 .
[CrossRef] [PubMed]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Peng, M.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 .
[CrossRef] [PubMed]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 .
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852 .
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 .
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Qiu, J.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 .
[CrossRef] [PubMed]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 .
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett.35(13), 2215–2217 (2010).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 .
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Razdobreev, I.

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

Ren, J.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

Romanov, A.

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

Romanov, A. N.

Ruan, J.

Ruck, M.

E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
[CrossRef]

Sakka, Y.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011).
[CrossRef] [PubMed]

Schmidt, M. A.

Schwefel, H. G.

Semenov, S. L.

Shimaoka, F.

Shirahata, N.

H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011).
[CrossRef] [PubMed]

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Shubin, A. V.

Smith, G. P.

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
[CrossRef]

Song, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Sprenger, B.

Stahl, K.

S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
[CrossRef]

Ståhl, K.

S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
[CrossRef] [PubMed]

Stiegelschmitt, A.

Su, L.

Sulimov, V.

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

Sulimov, V. B.

Sun, H.

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Sun, H. T.

Suzuki, T.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 .
[CrossRef] [PubMed]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Tang, H.

Trusov, L. A.

Tsvetkov, V. B.

Ulvenlund, S.

S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
[CrossRef] [PubMed]

S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
[CrossRef]

S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
[CrossRef]

Umnikov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Usovich, O. V.

Veber, A. A.

Vel’miskin, V. V.

Wang, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Wheatley, A.

S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
[CrossRef]

Wondraczek, L.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 .
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852 .
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

Wu, B.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Xu, J.

Xu, W.

Yang, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Yang, I.

Yang, L.

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

Yang, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Yin, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Yu, J.

Zeng, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

Zhang, Q.

Zhao, H.

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

Zheng, L.

Zhigunov, D.

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

Zhou, D.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Zhou, P.

Zhou, S.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Zhu, B.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Zhu, C.

Zhu, K.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett.90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006).
[CrossRef]

Eur. J. Inorg. Chem. (1)

M. Lindsjö, A. Fischer, and L. Kloo, “Improvements of and insights into the isolation of bismuth polycations from benzene solution – single-crystal structure determinations of Bi8[GaCl4]2 and Bi5[GaCl4]3,” Eur. J. Inorg. Chem.2005(4), 670–675 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient bismuth-doped fiber lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008).
[CrossRef]

Inorg. Chem. (4)

N. J. Bjerrum, C. R. Boston, and G. P. Smith, “Lower oxidation states of bismuth. Bi+ and Bi53+ in molten salt solutions,” Inorg. Chem.6(6), 1162–1172 (1967).
[CrossRef]

J. Corbett, “Homopolyatomic ions of the heavy post-transition elements. the preparation, properties and bonding of Bi5(AlCl4)3 and Bi4(AlCl4),” Inorg. Chem.7(2), 198–208 (1968).
[CrossRef]

S. Ulvenlund, K. Ståhl, and L. Bengtsson-Kloo, “Structural and quantum chemical study of Bi53+ and isoelectronic main-group metal clusters. The crystal structure of pentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data and synthetic attempts on its antimony analogue,” Inorg. Chem.35(1), 223–230 (1996).
[CrossRef] [PubMed]

R. C. Burns, R. J. Gillespie, and W.-C. Luk, “The preparation, spectroscopic properties, and structure of the pentabismuth(3+) cation, Bi53+,” Inorg. Chem.17(12), 3596–3604 (1978).
[CrossRef]

J. Alloy. Comp. (1)

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

J. Chem. Soc. Chem. Commun. (1)

S. Ulvenlund, A. Wheatley, and L. Bengtsson, “Synthesis of main-group metal clusters in organic solvents,” J. Chem. Soc. Chem. Commun.1(1), 59–60 (1995).
[CrossRef]

J. Chem. Soc., Faraday Trans. (1)

S. Ulvenlund, L. Bengtsson-Kloo, and K. Stahl, “Formation of subvalent bismuth cations in molten gallium trichloride and benzene solutions,” J. Chem. Soc., Faraday Trans.91(23), 4223–4234 (1995).
[CrossRef]

J. Less Common Met. (1)

B. Krebs, M. Mummert, and C. Brendel, “Characterization of the Bi53+ cluster cation: preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3,” J. Less Common Met.116(1), 159–168 (1986).
[CrossRef]

J. Mater. Chem. (2)

H. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J. Li, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Opt. Express (10)

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-3-2562&id=226693 .
[CrossRef] [PubMed]

W. Xu, M. Peng, Z. Ma, G. Dong, and J. Qiu, “A new study on bismuth doped oxide glasses,” Opt. Express20(14), 15692–15702 (2012), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-20-14-15692&id=239280 .
[CrossRef] [PubMed]

A. V. Kir’yanov, V. V. Dvoyrin, V. M. Mashinsky, N. N. Il’ichev, N. S. Kozlova, and E. M. Dianov, “Influence of electron irradiation on optical properties of Bismuth doped silica fibers,” Opt. Express19(7), 6599–6608 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-7-6599 .
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6892 .
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20799 .
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-19345 .
[CrossRef] [PubMed]

J. Xu, H. Zhao, L. Su, J. Yu, P. Zhou, H. Tang, L. Zheng, and H. Li, “Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal,” Opt. Express18(4), 3385–3391 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3385 .
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21169 .
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852 .
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass,” Opt. Express20(7), 7212–7220 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7212 .
[CrossRef] [PubMed]

Opt. Lett. (7)

Opt. Mater. (2)

A. Romanov, Z. Fattakhova, D. Zhigunov, V. Korchak, and V. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (I). generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011).
[CrossRef]

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

Quantum Electron. (1)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Solid State Commun. (1)

J. Ren, L. Yang, J. Qiu, D. Chen, X. Jiang, and C. Zhu, “Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses,” Solid State Commun.140(1), 38–41 (2006).
[CrossRef]

Z. Anorg. Allg. Chem. (1)

E. Ahmed, D. Kohler, and M. Ruck, “Room-temperature synthesis of bismuth clusters in ionic liquids and crystal growth of Bi5(AlCl4)3,” Z. Anorg. Allg. Chem.635(2), 297–300 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 2
Fig. 2

(a) Raman spectrum of Bi5(GaCl4)3-A-36h. Vibration modes of Bi53+ are labeled in the figure. Inset is the polycation group of Bi53+; (b) Emission (curves 1-3) and excitation (curves 4-5) spectra of Bi5(GaCl4)3-A-36h at room temperature. Curve 1 is upon 470nm excitation, curve 2 is the emission spectrum calibrated to the detector spectral response, and both of them were recorded with liquid N2 cooled NIR photomultiplier (Hamamatsu R5509-72). Curve 3 was collected with a PbSe detector under the excitation of 808nm laser diode. Curves 4 and 5 were measured by monitoring the emissions at 1400 and 1500nm, respectively. Curve 4 is shifted vertically for clarity. For reference, curve 6 an emission spectrum of Er3+ doped fluorophosphate glass is listed upon 808nm excitation and the FWHM is much smaller than Bi5(GaCl4)3.

Fig. 1
Fig. 1

(a) Unit cell representation of Bi5(GaCl4)3 on the basis of Rietveld refining results; (b) XRD pattern (black circle) of Bi5(GaCl4)3-A-36h, corresponding Rietveld refining results (solid red line, Rp = 7.47%, Rwp = 14.6%, Rexp = 11.0%, GOF = 1.76, RB = 3.95%), Bragg positions (vertical green line) and difference profile (oliver line) between observed and calculated values. Inset is the sample before separation.

Fig. 3
Fig. 3

(a) Absorption spectra of (1) Bi5(GaCl4)3-A-36h and (2) benzene, I0 and I are the incident and transmitted radiation through the sample; (b) Decay curve of the emission at 1365nm from Bi5(GaCl4)3-A-36h excited by 470nm at room temperature. Red circles are fitted results by an equation I = 442.596exp(-t/8.67) with χ2 = 1.086.

Fig. 4
Fig. 4

(a) Time resolved emission spectra of Bi5(GaCl4)3-A-36h excited by 470nm at room temperature. Delay times are marked beside the curves; (b) Dependence of the intensity of infrared emission@1835nm of Bi5(GaCl4)3-A-36h on pump power of 808nm laser diode.

Fig. 5
Fig. 5

(a) Dependence of fluorescence intensity of Bi5(GaCl4)3-A (-●-) and Bi5(GaCl4)3-B (-●-) on reaction time; (b) Evolution of emission spectrum of Bi5(GaCl4)3-A with reaction time. Curve 1: 2h; curve 2: 4h; curve 3: 8h; curve 4: 24h; curve 5: 36h; curve 6: 72h; curve 7: 96h.

Tables (2)

Tables Icon

Table 1 Wyckoff positions (wp) and coordinates for Bi5(GaCl4)3

Tables Icon

Table 2 A comparison of unit cell parameters (Å), distances (Å) and angles (deg) between Bi5(GaCl4)3 and Bi5(AlCl4)3

Metrics