Abstract

We propose an optimization-based theoretical approach to tailor the optical response of silver/silica multilayer nanospheres over the visible spectrum. We show that the structure that provides the largest cross-section per volume/mass, averaged over a wide frequency range, is the silver coated silica sphere. We also show how properly chosen mixture of several species of different nanospheres can have an even larger minimal cross-section per volume/mass over the entire visible spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
    [CrossRef] [PubMed]
  2. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
    [CrossRef]
  3. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007).
    [CrossRef]
  4. S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
    [CrossRef]
  5. C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt.48, 5095–5098 (2009).
    [CrossRef] [PubMed]
  6. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
    [CrossRef] [PubMed]
  7. J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
    [CrossRef]
  8. C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011).
    [CrossRef] [PubMed]
  9. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
    [CrossRef]
  10. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003).
    [CrossRef]
  11. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
    [CrossRef] [PubMed]
  12. R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
    [CrossRef] [PubMed]
  13. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
    [CrossRef]
  14. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
    [CrossRef]
  15. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
    [CrossRef] [PubMed]
  16. Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010).
    [CrossRef]
  17. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011).
    [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  19. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  21. S. G. Johnson, “The nlopt nonlinear optimization package, http://ab-initio.mit.edu/nlopt ,”.
  22. S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005).
    [CrossRef]
  23. M. J. D. Powell, “The bobyqa algorithm for bound constrained optimization without derivatives,” Tech. rep., Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009).
  24. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
    [CrossRef] [PubMed]
  25. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010).
    [CrossRef]
  26. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
    [CrossRef]

2011 (3)

J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
[CrossRef]

C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011).
[CrossRef]

2010 (7)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010).
[CrossRef]

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010).
[CrossRef]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

2009 (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt.48, 5095–5098 (2009).
[CrossRef] [PubMed]

2008 (1)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007).
[CrossRef]

S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
[CrossRef]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

2006 (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005).
[CrossRef]

2003 (2)

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

1998 (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Ali, T.

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

Alyones, S.

C. W. Bruce and S. Alyones, “Extinction efficiencies for metallic fibers in the infrared,” Appl. Opt.48, 5095–5098 (2009).
[CrossRef] [PubMed]

S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
[CrossRef]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Bardhan, R.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).

Bruce, C.

S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
[CrossRef]

Bruce, C. W.

Buin, A.

S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
[CrossRef]

Chubich, D. A.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Fan, S.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010).
[CrossRef]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

Grady, N. K.

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

Grange, R.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Halas, N. J.

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

Hamam, R. E.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

Hsieh, C.-L.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

Karalis, A.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

Kometani, N.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010).
[CrossRef]

Kucherenko, S.

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005).
[CrossRef]

Lebedev, V. S.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Levit, S. D.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

Li, J.

J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
[CrossRef]

Medvedev, A. S.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

Mirin, N. A.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

Mukherjee, S.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

Noguez, C.

C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011).
[CrossRef] [PubMed]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007).
[CrossRef]

Nordlander, P.

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

Powell, M. J. D.

M. J. D. Powell, “The bobyqa algorithm for bound constrained optimization without derivatives,” Tech. rep., Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003).
[CrossRef]

Psaltis, D.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

Román-Velázquez, C. E.

C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011).
[CrossRef] [PubMed]

Ruan, Z.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Soljacic, M.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

Sytsko, Y.

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Vasil’ev, D. N.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

Vitukhnovsky, A. G.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Yoshida, A.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010).
[CrossRef]

Zhao, J.

J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
[CrossRef]

Zhu, J.

J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
[CrossRef]

ACS Nano (1)

R. Bardhan, N. K. Grady, T. Ali, and N. J. Halas, “Metallic nanoshells with semiconductor cores: Optical characteristics modified by core medium properties,” ACS Nano4, 6169–6179 (2010).
[CrossRef] [PubMed]

Adv. Mater. (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. lett. (2)

J. Zhu, J. Li, and J. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. lett.99, 101901 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. lett.98, 043101 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243 – 247 (1998).
[CrossRef]

Comput. Optim. Appl. (1)

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl.30, 297–318 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

S. Alyones, C. Bruce, and A. Buin, “Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag.55, 1856–1861 (2007).
[CrossRef]

J. Chem. Phys. (1)

C. E. Román-Velázquez and C. Noguez, “Designing the plasmonic response of shell nanoparticles: Spectral representation,” J. Chem. Phys.134, 044116 (2011).
[CrossRef] [PubMed]

J. Chem. Phys. C (1)

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye j-aggregates,” J. Chem. Phys. C114, 2867–2872 (2010).
[CrossRef]

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007).
[CrossRef]

R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: A simple nanomatryushka,” J. Phys. Chem. C114, 7378–7383 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114, 7324–7329 (2010).
[CrossRef]

Nano Lett. (2)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmonexciton coupling in nanoshell j-aggregate complexes,” Nano Lett.8, 3481–3487 (2008).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett.3, 543–547 (2003).
[CrossRef]

Phys. Rev. A (1)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75, 053801 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105, 013901 (2010).
[CrossRef] [PubMed]

Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010).
[CrossRef] [PubMed]

Quantum Electron. (1)

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye j-aggregate monolayer,” Quantum Electron.40, 246–248 (2010).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003).
[CrossRef] [PubMed]

Other (5)

M. J. D. Powell, “The bobyqa algorithm for bound constrained optimization without derivatives,” Tech. rep., Department of Applied Mathematics and Theoretical Physics, Cambridge England (2009).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Songs, 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

S. G. Johnson, “The nlopt nonlinear optimization package, http://ab-initio.mit.edu/nlopt ,”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an n layer nanosphere embedded in infinite dielectric medium. The outer radius and dielectric function of individual layers are (Ri, εi), i = 1, 2,..., n. The dielectric function of the medium is εm. The solid lines represent an incident plane wave which contains incoming and outgoing waves. The dashed line represents the scattered wave which only contains outgoing wave.

Fig. 2
Fig. 2

The total cross-section of silica coated silver spheres suspended in ethanol. The cross-section is normalized by volume (the left axis) and mass (the right axis). The insert is a TEM image of the fabricated nanoparticles. The radius of the silver core has a distribution with mean 26.3nm and standard deviation 9.3nm. The thickness of the silica shell is around 25.3nm. The red line is the measured total cross-section. The black bar represents the standard deviations from eight transmission measurement on eight samples. The blue line is the Transfer Matrix calculation of the total cross-section with the radius of the silver core sampled from the measured distribution and the thickness of the silica shell fixed at 25.3nm. The dielectric function of ethanol is taken as εm = 1.85.

Fig. 3
Fig. 3

Optimization of average cross-sections over wide frequency range. The structure under consideration is a silver/silica multilayer nanosphere. The optimal structure found by the optimization engine is always silver coated silica sphere. For all subfigures, blue (red) lines show the optimized average cross-sections over the blue (red) shaded frequency range. (a)(b)(c) correspond to scattering, absorption and total cross-sections per volume respectively. (d)(e)(f) correspond to scattering, absorption and total cross-sections per mass respectively. The radius of the silica cores and the thickness of silver shells exhibiting the cross-sections shown above are given in Table 1.

Fig. 4
Fig. 4

Optimization of minimal cross-sections over a wide frequency range. The structure under consideration is a mixture of several species of silver coated silica spheres. The target frequency range is shaded in yellow. For all subfigures, blue, red, black lines corresponds to one, two, and three species of nanospheres. The black dashed lines in (c) and (f) correspond to ten species of nanospheres. (a)(b)(c) correspond to scattering, absorption, and total cross-sections per volume respectively. (d)(e)(f) correspond to scattering, absorption and total cross-sections per mass respectively. The radius of the silica cores and the thickness of silver shells corresponding to these cross-sections are given in Table 2.

Tables (2)

Tables Icon

Table 1 Optimization of average cross-sections

Tables Icon

Table 2 Optimization of minimal cross-sections

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R l ( r ) | i = A i j l ( k i r ) + B i y l ( k i r )
[ A i + 1 B i + 1 ] = M i + 1 , i [ A i B i ]
M i + 1 , i = [ j l ( k i + 1 R i ) y l ( k i + 1 R i ) j l ( k i + 1 R i ) k i + 1 R i + j l ( k i + 1 R i ) y l ( k i + 1 R i ) k i + 1 R i + y l ( k i + 1 R i ) ] 1 × [ j l ( k i R i ) y l ( k i R i ) j l ( k i R i ) k i R i + j l ( k i R i ) y l ( k i R i ) k i R i + y l ( k i R i ) ]
M i + 1 , i = [ j l ( k i + 1 R i ) y l ( k i + 1 R i ) j l ( k i + 1 R i ) k i + 1 R i + j l ( k i + 1 R i ) y l ( k i + 1 R i ) k i + 1 R i + y l ( k i + 1 R i ) ] 1 × [ j l ( k i R i ) y l ( k i R i ) ε i + 1 ε i ( j l ( k i R i ) k i R i + j l ( k i R i ) ) ε i + 1 ε i ( y l ( k i R i ) k i R i + y l ( k i R i ) ) ]
[ A n + 1 B n + 1 ] = M n + 1 , n M n , n 1 M 3 , 2 M 2 , 1 [ A 1 B 1 ] = M [ A 1 B 1 ]
R l ( r ) | n + 1 = C n + 1 h l 1 ( k n + 1 r ) + D n + 1 h l 2 ( k n + 1 r )
r l = C n + 1 D n + 1 = M 11 i M 21 M 11 + i M 21
P l , m = ± 1 = λ 2 16 π ( 2 l + 1 ) I 0
P l , m = ± 1 sca = λ 2 16 π ( 2 l + 1 ) I 0 | 1 r l | 2
P l , m = ± 1 abs = λ 2 16 π ( 2 l + 1 ) I 0 ( 1 | r l | 2 )
σ sca = σ l = 1 λ 2 8 π ( 2 l + 1 ) | 1 r σ , l | 2
σ abs = σ l = 1 λ 2 8 π ( 2 l + 1 ) ( 1 | r σ , l | 2 )
F O M = 1 ω max ω min ω min ω max σ normalized d ω
F O M = min ω σ normalized
σ normalized = i = 1 N w i σ i , normalized

Metrics