Abstract

We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
    [CrossRef] [PubMed]
  2. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express18(3), 2296–2301 (2010).
    [CrossRef] [PubMed]
  3. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett.36(16), 3094–3096 (2011).
    [CrossRef] [PubMed]
  4. C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers,” Opt. Express13(23), 9639–9644 (2005).
    [CrossRef] [PubMed]
  5. R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
    [CrossRef]
  6. Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
    [CrossRef]
  7. C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
    [CrossRef]
  8. D. Zimdars, J. V. Rudd, and M. Warmuth, “A Compact, Fiber-Pigtailed, Terahertz Time Domain Spectroscopy System,” Proc. ISSTT, 414–423 (2000).
  9. J. V. Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B19(2), 319–328 (2002).
    [CrossRef]
  10. Y. B. Ji, E. S. Lee, S.-H. Kim, J.-H. Son, and T.-I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express17(19), 17082–17087 (2009).
    [CrossRef] [PubMed]
  11. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).
  12. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express17(16), 13851–13859 (2009).
    [CrossRef] [PubMed]
  13. N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely Tunable 1.55 µm Detuned Dual Mode Laser diode for Compact Continuous-Wave THz Emitter,” ETRI J.33(5), 810–813 (2011).
    [CrossRef]
  14. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express19(16), 15397–15403 (2011).
    [CrossRef] [PubMed]
  15. K. H. Park, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, S.-P. Han, and M. Y. Jeon, “Portable terahertz spectrometer with InP related semiconductor photonic devices,” Proc. SPIE Photonics West, Jan. (2012).
  16. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express18(12), 12291–12297 (2010).
    [CrossRef] [PubMed]
  17. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst.13(02), 497–545 (2003).
    [CrossRef]
  18. N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
    [CrossRef]
  19. A. Danylov, “THz laboratory measurements of atmospheric absorption between 6% and 52% relative humidity,” Submillimeter-Wave Technology Laboratory University of Massachusetts Lowell, 175 Cabot Street, Suite 130, Lowell, MA 01854, http://stl.uml.edu , Sep. (2006).
  20. A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
    [CrossRef]
  21. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
    [CrossRef]

2011

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely Tunable 1.55 µm Detuned Dual Mode Laser diode for Compact Continuous-Wave THz Emitter,” ETRI J.33(5), 810–813 (2011).
[CrossRef]

N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express19(16), 15397–15403 (2011).
[CrossRef] [PubMed]

S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett.36(16), 3094–3096 (2011).
[CrossRef] [PubMed]

2010

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express18(12), 12291–12297 (2010).
[CrossRef] [PubMed]

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

2009

2008

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

2007

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

2006

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
[CrossRef]

2005

2003

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst.13(02), 497–545 (2003).
[CrossRef]

2002

Bähr, L.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Baker, C.

Bjarnason, J. E.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

Böttcher, J.

Brown, E. R.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst.13(02), 497–545 (2003).
[CrossRef]

Cámara Mayorga, I.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Cataluna, M. A.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Chun, H. S.

Daghestani, N. S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

Dietz, R. J. B.

Evans, M. J.

Fedor, A. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

Fujisaki, S.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

Gregory, I. S.

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Han, S.-P.

Hasek, T.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Hensel, H. J.

Inoue, R.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
[CrossRef]

Jang, Y.

Jeon, M. Y.

Jeon, T.-I.

Jeong, J. S.

Ji, Y. B.

Jördens, C.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Kim, N.

Kim, S.-H.

Ko, H.

Koch, M.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Korter, T. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

Krumbholz, N.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Künzel, H.

Lee, C. W.

Lee, D.

Lee, E. S.

Lee, Y.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

Leem, Y. A.

Linfield, E. H.

Mikulics, M.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Missous, M.

Mittleman, D. M.

Noh, S. K.

Ohno, Y.

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
[CrossRef]

Park, K. H.

Persheyev, S.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Roehle, H.

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

Rose, M. J.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Ross, G.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Rudd, J. V.

Ryu, H.-C.

Sartorius, B.

Schell, M.

Scherger, B.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Schindler, S.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

Schlak, M.

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Shin, J.

Sim, E.

Son, J.-H.

Stanze, D.

Tanaka, S.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

Tonouchi, M.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
[CrossRef]

Tribe, W. R.

Uetake, N.

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

Venghaus, H.

Vieweg, N.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

Yee, D.-S.

Appl. Phys. B

Y. Lee, S. Tanaka, N. Uetake, S. Fujisaki, R. Inoue, and M. Tonouchi, “Terahertz time-domain spectrometer with module heads coupled to photonic crystal fiber,” Appl. Phys. B87(3), 405–409 (2007).
[CrossRef]

Appl. Phys. Lett.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett.90(6), 061908 (2007).
[CrossRef]

Electron. Lett.

C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bähr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett.44(25), 1473–1474 (2008).
[CrossRef]

ETRI J.

N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely Tunable 1.55 µm Detuned Dual Mode Laser diode for Compact Continuous-Wave THz Emitter,” ETRI J.33(5), 810–813 (2011).
[CrossRef]

Int. J. High Speed Electron. Syst.

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst.13(02), 497–545 (2003).
[CrossRef]

J. Infrared Milli. Terahz. Waves

D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw Terahertz Spectrometer Pumped at 1.5 μm Wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2010).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys.45(10A), 7928–7932 (2006).
[CrossRef]

New J. Phys.

A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys.12(4), 043017 (2010).
[CrossRef]

Opt. Express

C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers,” Opt. Express13(23), 9639–9644 (2005).
[CrossRef] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express17(16), 13851–13859 (2009).
[CrossRef] [PubMed]

Y. B. Ji, E. S. Lee, S.-H. Kim, J.-H. Son, and T.-I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express17(19), 17082–17087 (2009).
[CrossRef] [PubMed]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 microm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express18(3), 2296–2301 (2010).
[CrossRef] [PubMed]

M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express18(12), 12291–12297 (2010).
[CrossRef] [PubMed]

N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express19(16), 15397–15403 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Semicond. Sci. Technol.

N. S. Daghestani, S. Persheyev, M. A. Cataluna, G. Ross, and M. J. Rose, “THz generation from a nanocrystalline silicon-based photoconductive device,” Semicond. Sci. Technol.26(7), 075015 (2011).
[CrossRef]

Other

A. Danylov, “THz laboratory measurements of atmospheric absorption between 6% and 52% relative humidity,” Submillimeter-Wave Technology Laboratory University of Massachusetts Lowell, 175 Cabot Street, Suite 130, Lowell, MA 01854, http://stl.uml.edu , Sep. (2006).

K. H. Park, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, S.-P. Han, and M. Y. Jeon, “Portable terahertz spectrometer with InP related semiconductor photonic devices,” Proc. SPIE Photonics West, Jan. (2012).

D. Zimdars, J. V. Rudd, and M. Warmuth, “A Compact, Fiber-Pigtailed, Terahertz Time Domain Spectroscopy System,” Proc. ISSTT, 414–423 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Photograph of fiber-pigtailed InGaAs PCA (FPP) module and (b) cross-sectional schematic view of FPP module.

Fig. 2
Fig. 2

Microscopic image of LTG-InGaAs PCA and schematic of solder dam

Fig. 3
Fig. 3

(a) Flip-chip bonding process and (b) shear strength test results for various solder and pad sizes and number of solder balls of PCB.

Fig. 4
Fig. 4

(a) Photograph of fabricated AlN submount and (b) SEM image after bonding to PCA chip by flip-chip bonding process, where heating temperature and heating time were 320 °C and 60 sec, respectively.

Fig. 5
Fig. 5

Temperature distribution images for three PCA chip configurations, taken with a MIR camera when optical pumping power of 19 dBm and bias of 3 V were applied to the chips. The compliance current was limited to 2 mA.

Fig. 6
Fig. 6

Detected THz signal as a function of photocurrent for two FPP emitter modules with different submounts, with inset showing emitter photocurrent characteristics for the heat-conductive PCB submount, where a certain amount of bias voltage increases every 10 min.

Fig. 7
Fig. 7

(a) Time trace data of free space and (b) its FFT amplitude spectrum measured using fiber-coupled THz-TDS containing FPP module. The time delay step and the frequency resolution were 0.1 ps and 2.44 GHz, respectively.

Fig. 8
Fig. 8

(a) FFT amplitude spectra and (b) absorption coefficient of α-lactose sample, obtained from fiber-coupled THz-TDS containing FPP module. The time delay step and the frequency resolution were 0.1 ps and 2.44 GHz, respectively.

Metrics