Abstract

The optical properties of the Au/Al2O3/Ag plasmonic metawaveguide with serial periodic stub resonators were numerically investigated. The refractive index of this design provides large value by using the ultra thin Al2O3 layer. Therefore, the dispersion relation which has negative group velocity, which is similar to the case of photonic crystals, can be formed in the sub diffraction energy range. The calculation results show the dependences of the negative group velocity dispersion curves on the size of the unit cell and the stub resonators. In addition, effective material properties are presented. From these analyses, it is found that this type of design has the property to strongly modulate the propagating characteristics of light.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005).
    [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
    [CrossRef] [PubMed]
  7. H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
    [PubMed]
  8. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
    [CrossRef]
  9. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010).
    [CrossRef] [PubMed]
  10. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  11. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express17(22), 20134–20139 (2009).
    [CrossRef] [PubMed]
  12. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
    [CrossRef]
  13. J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
    [CrossRef]
  14. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
    [CrossRef]
  15. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
    [CrossRef]
  16. http://www.optiwave.com/
  17. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1985).

2010 (1)

2009 (1)

2008 (1)

2007 (2)

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[PubMed]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

2006 (3)

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (3)

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Agrawal, G. P.

Atwater, H.

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

Brueck, S. R.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Cai, W. S.

Chettiar, U. K.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dionne, J.

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

Drachev, V. P.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Fang, G.

Fukui, M.

Haraguchi, M.

Hattori, H. T.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[PubMed]

Liu, J.

Liu, S.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Matsuzaki, Y.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nakagaki, M.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Okamoto, T.

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pannipitiya, A.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

Premaratne, M.

Rukhlenko, I. D.

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Yuan, H. K.

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, H.

Appl. Phys. Lett. (2)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett.89(21), 211126 (2006).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, A. Polman, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035416 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

H. J. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Other (2)

http://www.optiwave.com/

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of simulation set up. Two observation points were positioned for calculating the phase difference and input pulse was set for x polarization. (b) Dispersion relation of the plasmonic waveguide for various Al2O3 layer thicknesses, whose values are described by the parameter t.

Fig. 2
Fig. 2

The wavelength dependence of refractive index of the plasmonic waveguides derived from the results of Fig. 1. Al2O3 layer thicknesses are ranging from 10 nm to 120 nm.

Fig. 3
Fig. 3

(a)Schematic of Au/Al2O3 /Ag plasmonic waveguides with a stub resonator (b) The equivalent transmission-line representation of the stub resonator. ZL means the termination of the stub resonator. In this case, this can be expressed by the impedance of Au. ZMIM is a characteristic impedance of the Au/Al2O3 /Ag plasmonic waveguides. (c) The calculation results of the absolute value of the Zstub/ZMIM for various stub width ranging from 30 ~70 nm, where the stub height was fixed at 150 nm. The peak was obtained at the resonance energy of stub resonator.

Fig. 4
Fig. 4

(a)the design of the plasmonic waveguide with serial periodic stub resonators (b) Schematic of dispersion relation of plasmonic waveguide mode and stub resonance, where only positive group velocity dispersion curve is shown. (c) The calculation results of the dispersion relation for the condition of the size of the unit cell of 250 nm and the stub width of 30 nm. Only positive group velocity dispersion relation is shown. Near the 1.55 eV, the stub resonance is confirmed. (d) The imaginary part plot of the dispersion relation is presented. It is confirmed that the increases of the imaginary part of the wave vector are confirmed at the 1st BZ boundary, stub resonance energy and the Γ point.

Fig. 5
Fig. 5

The calculation results of the dispersion relations, where the size of the unit cell is 250 nm and the width of the stub is ranging from 30 nm to 80 nm. (a) The real part plot and (b) Imaginary part plot of the dispersion relations.

Fig. 6
Fig. 6

The calculation result of |cos(ka)|. Stub width ranges from 10 nm to 30 nm. Stub width ranges from 10 nm to 30 nm. in the case that the stub width is less than 20nm, the energy gap closes because the value is less than 2.

Fig. 7
Fig. 7

The calculation results of the dispersion relations, where the size of the unit cell is 250 nm and the width of the stub is 20 nm. (a) The real part plot and (b) Imaginary part plot of the dispersion relations.

Fig. 8
Fig. 8

The magnetic amplitude distributions at the stub resonance energy. (a) the size of the unit cell is 250 nm and the width of the stub resonator is 30 nm (b) the size of the unit cell is 100 nm and the width of the stub resonator is 20 nm.

Fig. 9
Fig. 9

(a)The calculation result of effective permittivity and (b)Effective permeability of Au/Al2O3 /Ag plasmonic waveguides with stub resonator. The sizes of the unit cell and stub width are 250 nm and 30 nm respectively.

Fig. 10
Fig. 10

(a)The calculation result of εeff and (b)Effective μeff of Au/Al2O3 /Ag plasmonic waveguides with stub resonator. The sizes of the unit cell and stub width are 100 nm and 20 nm respectively. In this case, both signs of Re (εeff) and Re (μeff) are same at the stub resonance energy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Z stub = Z S Z L i Z S tan( β stub d) Z S i Z L tan( β stub d)
k= k r +i k i k r = θ a k i = ln| H(r+L)/H(r) | L
cos(ka)=2cos( β MIM a)[ Z MIM Z stub ]sin( β MIM a)

Metrics