Abstract

We fabricated stochastic antireflective structures (ARS) and analyzed their stability against high power laser irradiation and high temperature annealing. For 8 ps pulse duration and 1030 nm wavelength we experimentally determined their laser induced damage threshold to 4.9 (±0.3) J/cm2, which is nearly as high as bulk fused silica with 5.6 (±0.3) J/cm2. A commercial layer stack reached 2.0 (±0.2) J/cm2. An annealing process removed adsorbed organics, as shown by XPS measurements, and significantly increased the transmission of the ARS. Because of their monolithic build the ARS endure such high temperature treatments. For more sensitive samples an UV irradiation proved to be capable. It decreased the absorbed light and reinforced the transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962).
    [CrossRef] [PubMed]
  2. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt.26, 1142–1146 (1987).
    [CrossRef] [PubMed]
  3. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A8, 549–553 (1991).
    [CrossRef]
  4. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A12, 333–339 (1995).
    [CrossRef]
  5. X. Jing, J. Ma, S. Liu, Y. Jin, H. He, J. Shao, and Z. Fan, “Analysis and design of transmittance for an antireflective surface microstructure,” Opt. Express17, 16119–16134 (2009).
    [CrossRef] [PubMed]
  6. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18, 13063–13071 (2010).
    [CrossRef] [PubMed]
  7. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett.35, 106–108 (2010).
    [CrossRef] [PubMed]
  8. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973).
    [CrossRef]
  9. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24, 1422–1424 (1999).
    [CrossRef]
  10. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
    [CrossRef]
  11. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
    [CrossRef]
  12. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8, 1429–1433 (2008).
    [CrossRef] [PubMed]
  13. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express15, 14793–14803 (2007).
    [CrossRef] [PubMed]
  14. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express15, 13108–13113 (2007).
    [CrossRef] [PubMed]
  15. M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE6883, 68830N (2008).
    [CrossRef]
  16. C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective sub-wavelength structures on microlens arrays - comparison of various manufacturing techniques,” Appl. Opt.51, 8–14 (2012).
    [CrossRef] [PubMed]
  17. M. Schulze, D. Lehr, M. Helgert, E.-B. Kley, and A. Tünnermann, “Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range,” Opt. Lett.36, 3924–3926 (2011).
    [CrossRef] [PubMed]
  18. I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
    [CrossRef]
  19. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980).
    [CrossRef]
  20. ISO/IEC IS 11254-2:2001: “Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test,” International Organization for Standardization, Geneva, Switzerland.
  21. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
    [CrossRef]
  22. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
    [CrossRef]
  23. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965).
    [CrossRef]
  24. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
    [CrossRef]
  25. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12, 661–664 (1973).
    [CrossRef] [PubMed]
  26. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
    [CrossRef]

2012

2011

2010

2009

2008

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8, 1429–1433 (2008).
[CrossRef] [PubMed]

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE6883, 68830N (2008).
[CrossRef]

2007

2006

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

1999

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24, 1422–1424 (1999).
[CrossRef]

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

1998

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

1996

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

1995

1991

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A8, 549–553 (1991).
[CrossRef]

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

1987

1980

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980).
[CrossRef]

1973

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973).
[CrossRef]

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
[CrossRef]

N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12, 661–664 (1973).
[CrossRef] [PubMed]

1965

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965).
[CrossRef]

1962

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962).
[CrossRef] [PubMed]

Asakawa, K.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962).
[CrossRef] [PubMed]

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Bloembergen, N.

Brunner, R.

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Chen, H. L.

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Choi, H. J.

Chuang, S. Y.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973).
[CrossRef]

Deinega, A.

DeShazer, L. G.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
[CrossRef]

Dimov, S. S.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Fan, Z.

Fuchs, H.-J.

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE6883, 68830N (2008).
[CrossRef]

Fujimoto, A.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Gelkova, A. B.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Grann, E. B.

Hane, K.

He, H.

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Helgert, M.

Herrmann, R.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Hiraoka, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973).
[CrossRef]

Iordanova, J. I.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Jin, Y.

Jing, X.

Kaiser, N.

Kanamori, Y.

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Kelley, P. L.

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965).
[CrossRef]

Kimura, Y.

Kley, E.-B.

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Lee, Y. T.

Lehr, D.

Leitel, R.

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Leung, K. M.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
[CrossRef]

Lin, C. H.

Lin, Y. H.

Liu, S.

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8, 1429–1433 (2008).
[CrossRef] [PubMed]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980).
[CrossRef]

Lozovik, Y.

Ma, J.

Milam, D.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980).
[CrossRef]

Milev, I. Y.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Miller, W. H.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962).
[CrossRef] [PubMed]

Moharam, M. G.

Morhard, C.

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Munzert, P.

Nakanishi, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Newnam, B. E.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
[CrossRef]

Nishida, N.

Noack, F.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Ohta, Y.

Ono, Y.

Pacholski, C.

Pommet, D. A.

Potapkin, B.

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Rosenfeld, A.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Saito, S.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Sasaki, M.

Schulz, U.

Schulze, M.

Shao, J.

Song, Y. M.

Southwell, W. H.

Spatz, J. P.

Spielmann, Ch.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

Sundermann, M.

Terziev, D. V.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Todorova, L. B.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

Tünnermann, A.

Valuev, I.

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Wendling, I.

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Yu, J. S.

Acta Physiol. Scand.

C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand.56, 385–386 (1962).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A69, S373–S376 (1999).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A62, 293–294 (1996).
[CrossRef]

Appl. Phys. Lett.

W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett.36, 891–893 (1980).
[CrossRef]

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett.23, 607–609 (1973).
[CrossRef]

J. Appl. Phys.

I. Y. Milev, S. S. Dimov, D. V. Terziev, J. I. Iordanova, L. B. Todorova, and A. B. Gelkova, “Laserinduced damage threshold measurements of optical dielectric coatings at λ=1.06 μm,” J. Appl. Phys.70, 4057–4060 (1991).
[CrossRef]

J. Opt. Soc. Am. A

Microelec. Eng.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelec. Eng.83, 1503–1508 (2006).
[CrossRef]

Nano Lett.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8, 1429–1433 (2008).
[CrossRef] [PubMed]

Nature

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “moth eye” principle,” Nature244, 281–282 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett.15, 1005–1008 (1965).
[CrossRef]

Proc. SPIE

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE6883, 68830N (2008).
[CrossRef]

Thin Solid Films

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Other

ISO/IEC IS 11254-2:2001: “Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test,” International Organization for Standardization, Geneva, Switzerland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM images of typical stochastic antireflective structures (ARS) fabricated with our process. Taken at 30° tilt angle, the left picture displays the structures without any deposition on top while in the right picture the ARS were covered with platinum in a FIB system (focused ion beam) and sliced with a gallium ion beam. One can easily recognize the stochastic distribution of the ARS. In (b) transmission spectra of four different ARS in fused silica (backside reflection neglected) are compared to a non-antireflective surface (black line). The size and therewith the maximum in transmission can be controlled by the fabrication parameters. We fabricated ARS for the UV (blue line), the VIS (green line), the NIR (yellow line), and IR range (red line) of the spectrum. Note the OH absorption at about 1380 nm.

Fig. 2
Fig. 2

Reflection and transmission spectra of single-sided ARS in the UV range compared to a plain fused silica surface (black line) before and after the annealing process which removed adsorbed organics. Note that after 8 weeks of ”aging” (blue line) the transmission compared to new ARS (red line) decreased while the reflection only minimally changed. After the annealing process the transmission increased even above the initial values (green line).

Fig. 3
Fig. 3

XPS (X-ray photoelectron spectroscopy) measurements of ARS before (a) and after (b) the annealing process. The vanished fluorine peak and CF-CO binding signals indicate the elimination of adsorbed organics on the ARS. Due to the decreased absorption of light the transmission increased, as shown in Fig. 2.

Fig. 4
Fig. 4

(a) Transmission T and reflection R of plain fused silica and a sample equipped with ARS at 193 nm wavelength (note the broken transmission axis). These samples were measured after 24 hours, 8 days, and after the UV burning process. The image shows the transmission’s decline during the aging and its maximum right after the UV treatment. Here, one can see the antireflective property of the ARS at an increased transmission of about 3.2% for a single interface. We expected the organic’s absorption to be negligible after the UV burning. Based on this value we determined the absorptions for the two samples during their aging, as seen in (b).

Fig. 5
Fig. 5

(a) The survival curve for ARS (on front side) with 10,000 pulses, measured at 1030 nm wavelength, 8 ps pulse duration, 0° incidence angle, 28 μm beam diameter (1/exp(2)), and 1.0 mm wafer thickness. The measurement setup based on the ISO standard 11254-2. The LIDT can be identified at the fitted curve (red) for several damage probabilities. Our measured values referred to 0% damage probability (LIDT0%). In (b) the LIDT0% of the same sample is shown for several other pulse numbers. With higher number of pulses the LIDT declines, which is caused by the accumulating damage behavior of the material.

Tables (1)

Tables Icon

Table 1 Laser induced damage threshold (LIDT) of plain fused silica, silica with ARS on the front, and with ARS on the back side of the wafers. Since self-focusing effects occurred at the first measurements with a 1/exp(2) beam diameter of 28 μm and 1.0 mm thick samples, we repeated the measurements with an increased 1/exp(2) beam diameter of 55 μm and thinner wafers of 0.5 mm thickness. Our stochastic ARS proved to be nearly as stable to high power densities as bulk fused silica.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

100 % = R + T + S + A
S = 100 % ( R + T ) UVburned
A = ( R + T ) UVburned ( R + T ) aged

Metrics