Abstract

We propose a novel optical hybrid plasmonic patch nano-antenna for operation at the standard telecommunication wavelength of 1550 nm. The nano-antenna is designed to be compatible with a hybrid plasmonic waveguide through matching of both the operational mode and the wave impedance. The antenna is designed to receive the optical signal from a planar waveguide and redirect the signal out of plane, and is therefore useful for inter- or intra-chip optical communications and sensing. The transmission line model in conjunction with surface plasmon theory is used to develop analytical formulas for design and analysis, and a 3-dimensional full-wave numerical method is used to validate the design. The proposed device provides a bandwidth of more than 15 THz, a gain of 5.6 dB, and an efficiency of 87%. Furthermore, by designing an 8 × 8 array of the proposed antenna, a directivity of 20 dBi and steering of the beam angle are achieved by controlling the relative phase shift between elements of the array.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011).
    [CrossRef]
  2. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  3. H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
    [CrossRef]
  4. T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
    [CrossRef] [PubMed]
  5. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
    [CrossRef] [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  7. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  8. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B2, 1538–1541 (1985).
    [CrossRef]
  9. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989).
    [CrossRef] [PubMed]
  10. J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
    [CrossRef]
  11. F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005).
    [CrossRef] [PubMed]
  12. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
    [CrossRef]
  13. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
    [CrossRef] [PubMed]
  14. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
    [CrossRef] [PubMed]
  15. A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
    [CrossRef] [PubMed]
  16. A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).
  17. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
    [CrossRef] [PubMed]
  18. M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
    [CrossRef]
  19. S. Sederberg and A. Elezzabi, “Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express19, 10456–10461 (2011).
    [CrossRef] [PubMed]
  20. S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express19, 15532–15537 (2011).
    [CrossRef] [PubMed]
  21. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
    [CrossRef]
  22. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
    [CrossRef] [PubMed]
  23. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
    [CrossRef] [PubMed]
  24. Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
    [CrossRef] [PubMed]
  25. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
    [CrossRef]
  26. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006).
    [CrossRef]
  27. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
    [CrossRef]
  28. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18, 348–363 (2010).
    [CrossRef] [PubMed]
  29. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18, 11728–11736 (2010).
    [CrossRef] [PubMed]
  30. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
    [CrossRef] [PubMed]
  31. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
    [CrossRef]
  32. J. Guo and R. Adato, “Control of 2d plasmon-polariton mode with dielectric nanolayers,” Opt. Express16, 1232–1237 (2008).
    [CrossRef] [PubMed]
  33. K. Wang and A. C. Foster, “Optimization of cmos-compatible hybrid plasmonic waveguides for nonlinear applications,” in “OSA Technical Digest (CD),” (Optical Society of America, 2011), JTuB15 (2011).
  34. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
    [CrossRef] [PubMed]
  35. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
    [CrossRef]
  36. K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express19, 17075–17085 (2011).
    [CrossRef] [PubMed]
  37. A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
    [CrossRef]
  38. Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19, 8735–8749 (2011).
    [CrossRef] [PubMed]
  39. R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light 15,” Materials Today15, 26–34 (2012).
    [CrossRef]
  40. F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).
  41. C. K. Toth, “R&d of mobile lidar mapping and future trends,” in “Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland)”, (2009).
  42. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
    [CrossRef]
  43. D. M. Pozar, Microwave Engineering, 2nd Edition (John Wiley and Sons, 1998).
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  45. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (Wiley, 2005).
  46. J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid crystal cladding,” Opt. Express20, 15359–15376 (2012).
    [CrossRef] [PubMed]

2012 (3)

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light 15,” Materials Today15, 26–34 (2012).
[CrossRef]

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
[CrossRef]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid crystal cladding,” Opt. Express20, 15359–15376 (2012).
[CrossRef] [PubMed]

2011 (8)

Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19, 8735–8749 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Elezzabi, “Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express19, 10456–10461 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express19, 15532–15537 (2011).
[CrossRef] [PubMed]

K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express19, 17075–17085 (2011).
[CrossRef] [PubMed]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011).
[CrossRef]

2010 (5)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
[CrossRef]

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18, 348–363 (2010).
[CrossRef] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18, 11728–11736 (2010).
[CrossRef] [PubMed]

2009 (3)

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

2008 (8)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

J. Guo and R. Adato, “Control of 2d plasmon-polariton mode with dielectric nanolayers,” Opt. Express16, 1232–1237 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

2007 (2)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef]

2005 (3)

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

2004 (1)

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
[CrossRef]

1989 (1)

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989).
[CrossRef] [PubMed]

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

1951 (1)

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).

Adato, R.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Alda, J.

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

Alloatti, L.

Alu, A.

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).

Amzajerdian, F.

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

Ang, L. K.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Avrutsky, I.

Bai, P.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (Wiley, 2005).

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Boreman, G.

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005).
[CrossRef] [PubMed]

Boyraz, O.

Brongersma, M. L.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
[CrossRef]

Buchwald, W.

Campione, S.

Cao, L.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Capolino, F.

Carminati, R.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Chau, K. J.

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
[CrossRef]

Chen, S.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Chen, Y.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

Clemens, B.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Dai, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Dorfmuller, J.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Elezzabi, A.

Elezzabi, A. Y.

Engheta, N.

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).

Fan, P.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

Fischer, U. C.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989).
[CrossRef] [PubMed]

Formanek, F.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Foster, A. C.

K. Wang and A. C. Foster, “Optimization of cmos-compatible hybrid plasmonic waveguides for nonlinear applications,” in “OSA Technical Digest (CD),” (Optical Society of America, 2011), JTuB15 (2011).

Freude, W.

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Garcia-Meca, C.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Gonzlez, F.

F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005).
[CrossRef] [PubMed]

Gralak, B.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Greffet, J. J.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
[CrossRef]

Gu, M. X.

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

Guo, J.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Han, Z.

He, S.

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Hines, G. D.

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

Johansson, P.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Joulain, K.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Kall, M.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Koos, C.

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Lemoine, P. A.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Leuthold, J.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Lpez-Alonso, J. M.

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Ly-Gagnon, D.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Maqsood, M. W.

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
[CrossRef]

Marti, J.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Martinez, A.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Mehfuz, R.

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
[CrossRef]

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Mulet, J. P.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Ooi, K. J. A.

Ortuno, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Oulton, R. F.

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light 15,” Materials Today15, 26–34 (2012).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Park, J. S.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

Petway, L. B.

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

Pfeifle, J.

Pierrottet, D. F.

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989).
[CrossRef] [PubMed]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd Edition (John Wiley and Sons, 1998).

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Rico-Garca, J. M.

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

Roback, V. E.

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

Salvador, R.

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
[CrossRef]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
[CrossRef]

Sederberg, S.

Segerink, B.

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Shegai, T.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

Song, Q.

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Stefani, D.

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

Stefani, F. D.

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef]

Taminiau, H.

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
[CrossRef]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Timurdogan, E.

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
[CrossRef]

Toth, C. K.

C. K. Toth, “R&d of mobile lidar mapping and future trends,” in “Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland)”, (2009).

Van, V.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Wang, K.

K. Wang and A. C. Foster, “Optimization of cmos-compatible hybrid plasmonic waveguides for nonlinear applications,” in “OSA Technical Digest (CD),” (Optical Society of America, 2011), JTuB15 (2011).

Watts, M. R.

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
[CrossRef]

Wessel, J.

Wilde, Y. D.

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

Wu, M.

Yaacobi, A.

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
[CrossRef]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Zengin, G.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Ann. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Ann. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

M. W. Maqsood, R. Mehfuz, and K. J. Chau, “Design and optimization of a high-efficiency nanoscale ± 90 degree light-bending structure by mode selection and tailoring,” Appl. Phys. Lett.97, 151111 (2010).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70, 1354–1356 (1997).
[CrossRef]

Infrared Physics & Technology (1)

F. Gonzlez and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic ir antennas,” Infrared Physics & Technology46, 418–428 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Materials Today (1)

R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light 15,” Materials Today15, 26–34 (2012).
[CrossRef]

Nano Lett. (1)

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Alda, J. M. Rico-Garca, J. M. Lpez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology16, S230 (2005).
[CrossRef]

Nat Commun (2)

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3d optical yagi-uda nanoantenna array,” Nat Commun2, 10.1038 (2011).
[CrossRef]

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat Commun2, 481–486 (2011).
[CrossRef] [PubMed]

Nat Mater (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater7, 442–453 (2008).
[CrossRef] [PubMed]

Nat Photon (5)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008).
[CrossRef]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat Photon3, 658–661 (2009).
[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat Photon5, 83–90 (2011).
[CrossRef]

H. Taminiau, D. Stefani, B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat Photon2, 234–237 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat Photon2, 496–500 (2008).
[CrossRef]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature444, 740–743 (2006).
[CrossRef] [PubMed]

Opt. Express (10)

J. Guo and R. Adato, “Control of 2d plasmon-polariton mode with dielectric nanolayers,” Opt. Express16, 1232–1237 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical yagi-uda antenna,” Opt. Express16, 10858–10866 (2008).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17, 16646–16653 (2009).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18, 348–363 (2010).
[CrossRef] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18, 11728–11736 (2010).
[CrossRef] [PubMed]

Q. Song, S. Campione, O. Boyraz, and F. Capolino, “Silicon-based optical leaky wave antenna with narrow beam radiation,” Opt. Express19, 8735–8749 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Elezzabi, “Sierpiski fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna,” Opt. Express19, 10456–10461 (2011).
[CrossRef] [PubMed]

S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express19, 15532–15537 (2011).
[CrossRef] [PubMed]

K. J. A. Ooi, P. Bai, M. X. Gu, and L. K. Ang, “Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides,” Opt. Express19, 17075–17085 (2011).
[CrossRef] [PubMed]

J. Pfeifle, L. Alloatti, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid crystal cladding,” Opt. Express20, 15359–15376 (2012).
[CrossRef] [PubMed]

Opt. Letters (1)

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Letters37, 1454–1456 (2012).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

A. Alu and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B78, 195111 (2008).

Phys. Rev. Lett. (5)

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett.62, 458–461 (1989).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93, 200801 (2004).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Reports on Progress in Physics (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics70, 1–88 (2007).
[CrossRef]

Science (3)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Selected Topics in Quantum Electronics, IEEE Journal (1)

R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” Selected Topics in Quantum Electronics, IEEE Journal14, 1496–1501 (2008).
[CrossRef]

Other (5)

D. M. Pozar, Microwave Engineering, 2nd Edition (John Wiley and Sons, 1998).

F. Amzajerdian, D. F. Pierrottet, L. B. Petway, G. D. Hines, and V. E. Roback, “Lidar systems for precision navigation and safe landing on planetary bodies,” NASA. Technical Reports (2011).

C. K. Toth, “R&d of mobile lidar mapping and future trends,” in “Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland)”, (2009).

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition (Wiley, 2005).

K. Wang and A. C. Foster, “Optimization of cmos-compatible hybrid plasmonic waveguides for nonlinear applications,” in “OSA Technical Digest (CD),” (Optical Society of America, 2011), JTuB15 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Patch nano-antenna fed by a plasmonic hybrid waveguide (a) Perspective view (b) Cross-sectional schematic.

Fig. 2
Fig. 2

Numerically calculated real component of the effective refractive index, neff.

Fig. 3
Fig. 3

Numerically calculated y-component of electric field, |Ey| (a) in two dimensions at the cross section of the hybrid plasmonic waveguide that feeds the nano-antenna and (b) in one dimension when x = 0.

Fig. 4
Fig. 4

The magnitude of the different components of the electric field at the center of the SiO2 layer (x = 0 and y = −105 nm) for different values of z, and at the wavelength of 1550 nm.

Fig. 5
Fig. 5

Numerically calculated ratio of the reflected wave to the incident wave, S11, versus operation frequency and wavelength.

Fig. 6
Fig. 6

3-D Radiation gain plot, (a) Radiation pattern alone (b) Radiation pattern with the nano-antenna structure superimposed for reference.

Fig. 7
Fig. 7

3-D Radiation pattern of a 8x8 array of the designed patch antenna.

Fig. 8
Fig. 8

Using the designed antenna for beam-steering applications (a) The resultant pattern when Δϕ = −90°, (b) The resultant pattern when Δϕ = +90°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E y E z = K z K y = ω c ε m ε d ε m + ε d ω c ε d 2 ε m + ε d = ε m ε d
Z antenna = 1 Y in = 1 2 G , G = W 2 120 λ 0 [ 1 1 24 ( 2 π h λ 0 ) 2 ]
Z Waveguide = Z 0 n eff = 377 n eff
n eff = ε d ε m ε d + ε m F ( W , h ) , F ( W , h ) = 1 + 1798 W + 3114 h + 10.55 W h 32300 + 759.7 W + 3337 h + 10.55 W h

Metrics