Abstract

In this paper, temperature compensated microfiber Bragg grating (mFBG) is realized by use of a liquid with a negative thermo-optic coefficient. The effects of grating elongation and the index change of silica glass are compensated by refractive index change of the liquid through evanescent-field interaction. A reduced thermal sensitivity of 0.67 pm/°C is achieved, which is 1/15 in magnitude of the uncompensated counterparts. Further theoretical analysis demonstrates that temperature insensitivity can be obtained with different combinations of microfiber diameter and the refractive index/thermal optic coefficient of the employed liquid. The proposed method is promising due to the compactness and high flexibility of the device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
    [CrossRef]
  2. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg,” in 22nd European Conference on Optical Communication- ECOC'96, Oslo, Norway, September 15–19, 1996.
  3. T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
    [CrossRef]
  4. R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.
  5. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt.34(30), 6859–6861 (1995).
    [CrossRef] [PubMed]
  6. G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.
  7. R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.
  8. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
    [CrossRef]
  9. N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express16(23), 19018–19033 (2008).
    [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  11. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  12. L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhe Jiang University Press, Zhe Jiang, 2009), Chap. 1.
  13. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A16(8), 1992–1996 (1999).
    [CrossRef]
  14. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
    [CrossRef] [PubMed]
  15. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
    [CrossRef]
  16. K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
    [CrossRef]

2012

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

2011

2008

2004

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1999

1997

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

1995

1983

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Blanc, W.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Bures, J.

Cassidy, S. A.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

Chung, K. M.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

Dewinter, G.

Dewynter, V.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Dussardier, B.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Ferdinand, P.

N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express16(23), 19018–19033 (2008).
[CrossRef] [PubMed]

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Gao, S.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ghosh, R.

Guan, B. O.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Hattori, Y.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hornung, S.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

Huy, M. C. P.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Inoue, A.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

Iwashima, T.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

Jin, L.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Kashyap, R.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

Krug, P. A.

Laffont,

Laffont, G.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

Li, J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Liu, Z. Y.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

Lou, J. Y.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, C.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mothe, N.

Nishimura, M.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

Ouellette, F.

Pagnoux, D.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

N. Mothe and D. Pagnoux, M. CV. Phan Huy, G. Dewinter, Laffont, and P. Ferdinand, “Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers,” Opt. Express16(23), 19018–19033 (2008).
[CrossRef] [PubMed]

Phan Huy, V.

Ran, Y.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Reeve, M. H.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shigematsu, M.

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

Sun, L. P.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Tam, H. Y.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011).
[CrossRef] [PubMed]

Thorncraft, D. A.

Tong, L. M.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Yoffe, G. W.

Appl. Opt.

Electron. Lett.

R. Kashyap, S. Hornung, M. H. Reeve, and S. A. Cassidy, “Temperature de-sensitization of delay in optical fibres for sensor applications,” Electron. Lett.19(24), 1039–1040 (1983).
[CrossRef]

T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes,” Electron. Lett.33(5), 417–419 (1997).
[CrossRef]

IEEE Photon. J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

K. M. Chung, Z. Y. Liu, C. Lu, and H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett.24(8), 700–702 (2012).
[CrossRef]

IEEE Sens. J.

M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, “Passive temperature-compensating technique for microstructured fiber Bragg gratings,” IEEE Sens. J.8(7), 1073–1078 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Other

G. W. Yoffe, P. A. Krug, F. Ouelette, and D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper WI4.

R. Kashyap, D. Williams, and R. P. Smith, “Novel liquid and liquid crystal cored optical fibre Bragg gratings,” in Optical Society of America Topical meeting on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Williamsburg, USA, (ISBN 1 55752517 X), Opt. Soc. America, pp 25–7, 26–28 October 1997.

R. Kashyap, Fibre Bragg Gratings, 2nd ed. (Academic Press, 2009),Chap. 10.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg,” in 22nd European Conference on Optical Communication- ECOC'96, Oslo, Norway, September 15–19, 1996.

L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhe Jiang University Press, Zhe Jiang, 2009), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured reflection spectra of the immersed mFBG with a diameter of 5.2 µm measured at 15°C and 60°C, respectively; (b) Measured wavelength shifts as a function of temperature for the immersed mFBGs with different diameters. The curves are linear fits for individual responses.

Fig. 2
Fig. 2

Calculated transverse energy distribution of microfibers along the fiber diameter, (a) D = 4µm; (b) D = 5.2µm; (c) D = 10.2µm.

Fig. 3
Fig. 3

Calculated and measured temperature sensitivity as a function of microfiber diameter for the mFBG immersed in ethanol.

Fig. 4
Fig. 4

Calculated optimal diameters for temperature insensitivity as a function of the thermal-optic coefficient of liquid for different liquid refractive indexes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ B =2 n eff Λ
d λ B dT = λ B ( α+β )
d λ B dT = λ B ( α+ 1 n eff ( d n eff d n si η si + d n eff d n liq η liq ) )

Metrics