Abstract

We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)1/2 can be achieved while the cantilever stiffness is varied over four orders of magnitude (≈0.01 N/m to ≈290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of high-bandwidth AFM measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bhushan and O. Marti, “Scanning probe microsopy—principle of operation, instrumentation, and probes,” Chap. 21, in Springer Handbook of Nanotechnology, 3rd edition, B. Bhushan, ed. (Springer, Heidelberg, Germany, 2010).
  2. F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Sci. Instrum.75, 949–983 (2003).
  3. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
    [CrossRef] [PubMed]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008).
    [CrossRef] [PubMed]
  5. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
    [CrossRef]
  6. T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
    [CrossRef]
  7. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
    [CrossRef] [PubMed]
  8. A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008).
    [CrossRef]
  9. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
    [CrossRef] [PubMed]
  10. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express20(4), 4272–4279 (2012).
    [CrossRef] [PubMed]
  11. K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005).
    [CrossRef]
  12. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields42(8), 2437–2445 (1990).
    [CrossRef] [PubMed]
  13. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
    [CrossRef]
  14. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
    [CrossRef] [PubMed]
  15. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  16. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
    [CrossRef] [PubMed]
  17. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
    [CrossRef] [PubMed]
  18. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol.24(12), 4433–4454 (2006).
    [CrossRef]
  19. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express19(10), 9020–9026 (2011).
    [CrossRef] [PubMed]
  20. K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
    [CrossRef]
  21. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15(8), 4745–4752 (2007).
    [CrossRef] [PubMed]
  22. H. Miao, K. Srinivasan, M. T. Rakher, M. Davanco, and V. Aksyuk, “Cavity optomechanical sensors,” in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), , (IEEE, 2011), pp. 1535–1538.
  23. J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
    [CrossRef]
  24. S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
    [CrossRef]
  25. C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
    [CrossRef] [PubMed]
  26. W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. (McGraw-Hill, 2002), App. A.
  27. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  28. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  29. Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nat. Rev. Microbiol.6(9), 674–680 (2008).
    [CrossRef] [PubMed]

2012 (2)

C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
[CrossRef] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express20(4), 4272–4279 (2012).
[CrossRef] [PubMed]

2011 (3)

S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express19(10), 9020–9026 (2011).
[CrossRef] [PubMed]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

2010 (1)

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

2009 (3)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nat. Rev. Microbiol.6(9), 674–680 (2008).
[CrossRef] [PubMed]

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (5)

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005).
[CrossRef]

2004 (2)

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
[CrossRef]

2003 (1)

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Sci. Instrum.75, 949–983 (2003).

1990 (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields42(8), 2437–2445 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

Aksyuk, V.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

Alegre, T. P.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Aspelmeyer, M.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Barclay, P.

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
[CrossRef]

Basarir, O.

Bhave, S. A.

Borselli, M.

Bramhavar, S.

Budakian, R.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

Chan, J.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Chrystal, C.

Chui, B. W.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

Craighead, H. G.

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

Davanço, M.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

Despont, M.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Drechsler, U.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Dufrêne, Y. F.

Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nat. Rev. Microbiol.6(9), 674–680 (2008).
[CrossRef] [PubMed]

Ekinci, K.

K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005).
[CrossRef]

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

Ekinci, K. L.

C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
[CrossRef] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express20(4), 4272–4279 (2012).
[CrossRef] [PubMed]

Engel, A.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Ford, J. E.

Frederix, P. L. T. M.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Giessibl, F. J.

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Sci. Instrum.75, 949–983 (2003).

Gröblacher, S.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Hoogenboom, B. W.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Hug, H. J.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Ilic, R.

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

Johnson, T. J.

Karabacak, D.

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

Kim, D.

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

Koenders, L.

A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008).
[CrossRef]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Kouh, T.

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

Krause, A.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Lissandrello, C.

C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
[CrossRef] [PubMed]

Mamin, H. J.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

Martin, S.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Miao, H.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

Michael, C. P.

Painter, O.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express15(8), 4745–4752 (2007).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
[CrossRef]

Painter, O. J.

Parpia, J. M.

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Rakher, M. T.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

Rivière, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

Roukes, M. L.

K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005).
[CrossRef]

Rugar, D.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

Safavi-Naeini, A. H.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Saulson, P. R.

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields42(8), 2437–2445 (1990).
[CrossRef] [PubMed]

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Solgaard, O.

Sridaran, S.

Srinivasan, K.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
[CrossRef]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Verbridge, S. S.

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

Vettiger, P.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Wu, M. C.

Yacoot, A.

A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008).
[CrossRef]

Yakhot, V.

C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
[CrossRef] [PubMed]

Yang, J. L.

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

T. Kouh, D. Karabacak, D. Kim, and K. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86(1), 013106 (2005).
[CrossRef]

J. L. Yang, M. Despont, U. Drechsler, B. W. Hoogenboom, P. L. T. M. Frederix, S. Martin, A. Engel, P. Vettiger, and H. J. Hug, “Miniaturized single-crystal silicon cantilevers for scanning force microscopy,” Appl. Phys. Lett.86(13), 134101 (2005).
[CrossRef]

S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and frequency dependent gas damping of nanomechanical resonators,” Appl. Phys. Lett.93(1), 013101 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D. Appl. Phys. (1)

A. Yacoot and L. Koenders, “Aspects of scanning force microscope probes and their effects on dimensional measurement,” J. Phys. D. Appl. Phys.41(10), 103001 (2008).
[CrossRef]

Nano Lett. (1)

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5(12), 909–914 (2009).
[CrossRef]

Nat. Rev. Microbiol. (1)

Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nat. Rev. Microbiol.6(9), 674–680 (2008).
[CrossRef] [PubMed]

Nature (2)

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430(6997), 329–332 (2004).
[CrossRef] [PubMed]

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Opt. Express (7)

Phys. Rev. B (1)

K. Srinivasan, P. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity,” Phys. Rev. B70(8), 081306(R) (2004).
[CrossRef]

Phys. Rev. D Part. Fields (1)

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D Part. Fields42(8), 2437–2445 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

C. Lissandrello, V. Yakhot, and K. L. Ekinci, “Crossover from hydrodynamics to the kinetic regime in confined nanoflows,” Phys. Rev. Lett.108(8), 084501 (2012).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103(10), 103601 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005).
[CrossRef]

F. J. Giessibl, “Advances in atomic force microscopy,” Rev. Sci. Instrum.75, 949–983 (2003).

Science (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

Other (3)

B. Bhushan and O. Marti, “Scanning probe microsopy—principle of operation, instrumentation, and probes,” Chap. 21, in Springer Handbook of Nanotechnology, 3rd edition, B. Bhushan, ed. (Springer, Heidelberg, Germany, 2010).

W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7th ed. (McGraw-Hill, 2002), App. A.

H. Miao, K. Srinivasan, M. T. Rakher, M. Davanco, and V. Aksyuk, “Cavity optomechanical sensors,” in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), , (IEEE, 2011), pp. 1535–1538.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Working principle of the disk-cantilever device. The grey parts are the device at equilibrium. The colored cantilever shows the FEM-calculated deformed shape (with an exaggerated amplitude) of the first order, in-plane, even-symmetry mechanical mode, for a system with disk diameter of 2.5 μm, cantilever width of 125 nm, and cantilever thickness of 260 nm. The color map in the microdisk resonator represents the absolute value of the FEM-calculated electric field amplitude of the TE1,10 optical mode. The mechanical motion of the cantilever is transduced by its influence on the microdisk optical mode, which is in- and out-coupled via the optical fiber taper waveguide probe. The left scale bar is for the cantilever displacement, the right one for the electric field amplitude in the microdisk, and the electric field in the fiber probe is not in scale. (b) Scanning electron micrograph of the fabricated device with nominal parameters the same as those in (a). (c) Schematic of the device characterization system.

Fig. 2
Fig. 2

Optical microscope images (a)-(c) and SEM images (e)-(g) of three fabricated devices. The disk diameter, D, and cantilever width, w, in the devices are: (a), (e) D = 2.5 μm, w = 132 nm ± 6 nm; (b), (f) D = 10 μm, w = 172 nm ± 5 nm; and (c), (g) D = 50 μm, w = 155 nm ± 7 nm. Typical zoomed-in optical spectra of high-Q optical modes obtained from devices with (d) a 10 μm disk and (h) a 50 μm disk. The spectral widths and corresponding optical Qs are (d) ≈2.5 pm and ≈6.3 × 105, and (h) ≈0.9 pm and ≈1.8 × 106, respectively. All errors are one standard deviation unless stated otherwise.

Fig. 3
Fig. 3

Optical spectra (a), (c), and (e) and corresponding mechanical spectra (b), (d), and (f) of three typical disk-cantilever devices. The left figures in (a), (c), and (e) show the full-range optical spectra, with the optical modes used in transducing the corresponding mechanical spectra shown in the zoomed-in right figures (orange traces). The black arrows in the zoomed-in figures show the wavelengths used for mechanical spectrum measurements. The geometrical parameters of these devices are: (a), (b) D = 2.5 μm, w = 132 nm ± 6 nm; (c), (d) D = 10 μm, w = 172 nm ± 5 nm; and (e), (f) D = 50 μm, w = 155 nm ± 7 nm.

Fig. 4
Fig. 4

(a) Spring constants and (b) experimentally measured fundamental mechanical frequencies of the fabricated devices. A spring constant range of over 4 orders of magnitude was achieved. The uncertainties in the fundamental mechanical frequency are not shown in (b) because they are much smaller than the data points.

Fig. 5
Fig. 5

(a) Sketches of 10 μm disks with (top) a curved cantilever and (bottom) a straight cantilever. (b) Simulated optomechanical coupling parameter gOM of TE/TM optical modes in the disk for devices with different disk sizes. Results for devices with curved cantilevers are shown as solid curves, while those for devices with straight cantilevers and 10 μm disks are presented as dashed curves for comparison. The cantilever width for all devices is set to 100 nm in the simulations. (c) Simulated optical Q of the TE1,10 mode for devices with 2.5 μm disk diameter, 100 nm cantilever width, and different cantilever-disk gaps.

Tables (1)

Tables Icon

Table 1 Experimentally measured and calculated properties of the disk-cantilever devicesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S xx ( ω )= 4 k B T m eff ω m Q mech ( ω 2 ω m 2 ) 2 + ω 2 ω m 2 Q mech 2
I trap = h 36( w 1 + w 2 ) [ w 1 4 + w 2 4 +2 w 1 w 2 ( w 1 2 + w 2 2 ) + w 2 w 1 2 ( w 1 3 +3 w 1 2 w 2 3 w 1 w 2 2 w 2 3 )+ ( w 2 w 1 2 ) 2 ( w 1 2 +4 w 1 w 2 + w 2 2 ) ],
I rect = w 3 h 12 .

Metrics