Abstract

By using the film mode matching method, a novel design for asymmetrical multi-section 1.55/1.31 μm wavelength splitter based on multimode interference has been proposed and simulated, which can be effectively applied to wavelength multiplexer, self-biased photodiode, and other optical devices. Compared with the conventional wavelength splitter design, the length of the novel structure has been reduced to at least 1/5, showing better performance. The presented structure is also adequate for splitting other wavelengths and more tolerable fabrications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
    [CrossRef]
  2. W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).
  3. H.-G. Bach, R. Kunkel, G. G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang, “Integration potential of waveguide-integrated photodiodes: self-powered photodetectors and sub-THz pin-Antennas,” in Optical Fiber Communication Conference (OFC, 2008), OMK1.
  4. H.-G. Bach, “Monolithically integrated optoelectronic subassembly,” US Patent 2009/0202197 A1.
  5. N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett.26(2), 102–103 (1990).
    [CrossRef]
  6. A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
    [CrossRef]
  7. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express15(13), 8300–8308 (2007).
    [CrossRef] [PubMed]
  8. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  9. R.-Y. Zhang, K. Janiak, H.-G. Bach, R. Kunkel, A. Seeger, S. Schubert, and M. Schell, “Performance of InP-based 90 °-hybrids QPSK receivers within C-Band,” in International Conference on Indium Phosphide and Related Materials (IPRM, 2011).
  10. A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
    [CrossRef]
  11. A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
    [CrossRef]
  12. R. Kunkel, H.-G. Bach, D. Hoffmann, G. G. Mekonnen, R. Zhang, D. Schmidt, and M. Schell, “Athermal InP-based 90°-hybrid Rx OEICs with pin-PDs >60 GHz for coherent DP-QPSK photoreceivers,” in International Conference on Indium Phosphide and Related Materials (IPRM, 2010).

2008

2007

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
[CrossRef]

J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express15(13), 8300–8308 (2007).
[CrossRef] [PubMed]

2006

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1991

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

1990

N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett.26(2), 102–103 (1990).
[CrossRef]

Anand, S.

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
[CrossRef]

Bach, H.-G.

A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
[CrossRef]

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Beling, A.

A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
[CrossRef]

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Campbell, J. C.

Chan, Y. –J.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Chiu, W.-Y.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Goto, N.

N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett.26(2), 102–103 (1990).
[CrossRef]

He, S.

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
[CrossRef]

Honkanen, S.

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

Huang, F.-H.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Kunkel, R.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Lin, W.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Liu, X.

Mekonnen, G. G.

A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
[CrossRef]

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Poyhonen, P.

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

Schmidt, D.

A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
[CrossRef]

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

Shi, J.-W.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Shi, Y.

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Sun, X.

Tahkokorpi, M.

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

Tervonen, A.

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

Wu, Y.-S.

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

Xiao, J.

Yip, G. L.

N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett.26(2), 102–103 (1990).
[CrossRef]

Electron. Lett.

N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett.26(2), 102–103 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron.13(1), 15–21 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett.3(6), 516–518 (1991).
[CrossRef]

Y. Shi, S. Anand, and S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett.19(22), 1789–1791 (2007).
[CrossRef]

W.-Y. Chiu, J.-W. Shi, Y.-S. Wu, F.-H. Huang, W. Lin, and Y. –J. Chan, “The Monolithic Integration of a wavelength-demultiplexer with evanescently coupled uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett.18(11), 1246–1248 (2006).

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-fed traveling wave photodetector for >100-GHz Applications,” J. Lightwave Technol.26(1), 16–20 (2008).
[CrossRef]

Opt. Express

Other

R.-Y. Zhang, K. Janiak, H.-G. Bach, R. Kunkel, A. Seeger, S. Schubert, and M. Schell, “Performance of InP-based 90 °-hybrids QPSK receivers within C-Band,” in International Conference on Indium Phosphide and Related Materials (IPRM, 2011).

H.-G. Bach, R. Kunkel, G. G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang, “Integration potential of waveguide-integrated photodiodes: self-powered photodetectors and sub-THz pin-Antennas,” in Optical Fiber Communication Conference (OFC, 2008), OMK1.

H.-G. Bach, “Monolithically integrated optoelectronic subassembly,” US Patent 2009/0202197 A1.

R. Kunkel, H.-G. Bach, D. Hoffmann, G. G. Mekonnen, R. Zhang, D. Schmidt, and M. Schell, “Athermal InP-based 90°-hybrid Rx OEICs with pin-PDs >60 GHz for coherent DP-QPSK photoreceivers,” in International Conference on Indium Phosphide and Related Materials (IPRM, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of the ridge waveguide (b) Conventional MMI wavelength splitter (c) Simulation results of field distribution of the conventional MMI coupler at 1.55 μm.

Fig. 2
Fig. 2

(a) An asymmetrical multi-section MMI wavelength splitter with section indications: (1) divider MMI, (2) collector MMI, (3) sub-collector MMI; simulation results of field distribution of asymmetrical multi-section MMI wavelength splitter: (b) at 1.55 μm, (c) at 1.31 μm without sub-collection MMI, (d) at 1.31 μm with sub-collection MMI.

Fig. 3
Fig. 3

The normalized power output of 1.55 μm and 1.31 μm varies with Divider MMI length.

Fig. 4
Fig. 4

The normalized power output of 1.31 μm (707 μm and 712.5 μm for divider MMI) varies with collection MMI length. The Inset shows the field distribution of the collection MMI at output position.

Fig. 5
Fig. 5

Extinction ratio and insertion loss of 1.31 μm as functions of the width of collection MMI. Both performances have been normalized by choosing the values of 5 μm as 0 dB.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L MMI =n L π (1.31)=(n+1) L π (1.55)
ER=10log( P d / P u )
IL=10log( P d / P i )

Metrics