Abstract

In this paper, we experimentally demonstrate the excitation of spoof surface plasmon polaritons (SPPs) on a wire-medium metamaterial slab in the microwave region. The spoof SPPs are excited on the opposite side of the slab from the source, which is desirable for applications such as sensing devices. Using the prism coupling method, we verify the excitation of spoof SPPs by measuring the reflection spectrum and near-field enhancement. The excitation of spoof SPPs is also verified by using the grating coupling method, where we demonstrate transmission enhancement through the metamaterial slab by placing diffraction gratings on both sides of the slab. Numerical investigation shows that the enhanced transmission can be attributed to the dispersion relations of the spoof SPPs and the periodicity of the diffraction grating. These properties can be used to realize extraordinary transmission and directional beaming.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
    [CrossRef] [PubMed]
  4. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
    [CrossRef] [PubMed]
  5. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett.102, 073901 (2009).
    [CrossRef] [PubMed]
  6. D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
    [CrossRef]
  7. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express17, 18184–18195 (2009).
    [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
    [CrossRef] [PubMed]
  9. M. A. Shapiro, G. Shvets, J. R. Sirigiri, and R. J. Temkin, “Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves,” Opt. Lett.31, 2051–2053 (2006).
    [CrossRef] [PubMed]
  10. A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter20, 295222 (2008).
    [CrossRef]
  11. Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
    [CrossRef]
  12. R. Raether, Surface Plasmons (Springer–Verlag, Berlin, 1988).
  13. K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
    [CrossRef]
  14. V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
    [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

2010 (1)

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
[CrossRef]

2009 (2)

2008 (1)

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter20, 295222 (2008).
[CrossRef]

2006 (1)

2005 (2)

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

1992 (1)

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
[CrossRef]

Agrafiotis, S.

Alexopolous, N.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Arima, T.

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
[CrossRef]

Beilenhoff, K.

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
[CrossRef]

Beruete, M.

Broas, R.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Demetriadou, A.

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter20, 295222 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
[CrossRef] [PubMed]

Falcone, F.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

Hartnagel, H.

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
[CrossRef]

Heinrich, W.

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
[CrossRef]

Hernandez, V.

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett.102, 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Kushiyama, Y.

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett.102, 073901 (2009).
[CrossRef] [PubMed]

Maier, S. A.

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Navarro-Cía, M.

Pendry, J. B.

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter20, 295222 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Raether, R.

R. Raether, Surface Plasmons (Springer–Verlag, Berlin, 1988).

Roman, J. E.

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett.102, 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
[CrossRef] [PubMed]

Shapiro, M. A.

Shvets, G.

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Sirigiri, J. R.

Sorolla, M.

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

Temkin, R. J.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Uno, T.

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
[CrossRef]

Vidal, V.

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, L.

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

ACM Trans. Math. Software (1)

V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Trans. Math. Software31, 351–362 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

K. Beilenhoff, W. Heinrich, and H. Hartnagel, “Improved finite-difference formulation in frequency domain for three-dimensional scattering problems,” IEEE Trans. Microwave Theory Tech.40, 540–546 (1992).
[CrossRef]

D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

IEICE Trans. Commun. (1)

Y. Kushiyama, T. Uno, and T. Arima, “Novel negative permittivity structure and its application to excitation of surface plasmon in microwave frequency range,” IEICE Trans. Commun.E93-B, 2629–2635 (2010).
[CrossRef]

J. Phys.: Condens. Matter (1)

A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys.: Condens. Matter20, 295222 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely-low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76, 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett.102, 073901 (2009).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308, 670–672 (2005).
[CrossRef] [PubMed]

Other (2)

R. Raether, Surface Plasmons (Springer–Verlag, Berlin, 1988).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House Publishers, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dispersion relation of the spoof SPPs for a half-plane and finite slab of the meta-material. The slab has two unit cells along the thickness direction, and the cutting plane of the surface is chosen as shown in the inset. The geometrical parameters are defined with respect to the unit length a as the radius of the sphere rs = 0.173a and the radius of the wire rw = 0.03a. In the experiment, the unit length was fixed at a = 10 mm. The shaded region represents the inside of the light cone. The spatial distributions of the electric field Ex corresponding to the lowest two modes are shown in the inset.

Fig. 2
Fig. 2

Schematic representation of a prism coupling experiment setup. Numerical simulation of the experiment by using the finite difference time domain (FDTD) method is also conducted with the same parameters as this setup, except for the height dimension; in the computation, we employed a periodic boundary condition along the height direction.

Fig. 3
Fig. 3

Experimentally determined dispersion relations for internal angles between 41.6° and 48.4°. The distance between the face of the prism and the metamaterial is d = 7.0 mm. Black dots represent the positions of reflection minima. The inset shows measured reflection spectra for an angle of incidence of 45°. The distance d is varied as follows: d = 3.5, 5.0, 7.0 and 8.5 mm.

Fig. 4
Fig. 4

Electric field intensity spectra measured by scanning using a monopole probe. The probe was moved along the lateral line depicted in Fig. 2. (a) shows the experimental result and (b) shows the simulated result. In both cases, the distance between the prism and the metamaterial is d = 3.5 mm, the angle of incidence is 45°. (c) shows the calculated spatial distributions of the electric field for 5.37 and 4.40 GHz.

Fig. 5
Fig. 5

Electric field intensity recorded with a monopole probe at the frequency of 5.50 GHz. The calculated results at the frequency of 5.37 GHz are also shown. The field intensity for the metamaterial face is scaled with respect to the field intensity for the prism face.

Fig. 6
Fig. 6

(a) Schematic representation of the metamaterial and the grating. The period of the grating is equal to three periods of the unit length of the metamaterial. This introduces modes folded at kxa/π = 1/3 into the dispersion relation. (b) The dispersion relation for the metamaterial slab, in which folding lines kxa/π = n/3 are also depicted. This dispersion relation is normalized with respect to the unit length of the metamaterial. In the experiment described later, the unit length of the metamaterial is fixed at a = 23 mm, and the distance between the grating and the metamaterial face is d = 3.5 mm. (c) The calculated transmission spectra as a function of frequency and wave number parallel to the surface. This dispersion relation is normalized with respect to the period of the grating.

Fig. 7
Fig. 7

(a) The electric Ex field distributions at the frequencies corresponding to four distinct peaks in Fig. 6(c). (b) The electric |Ex| field distributions at the same frequencies, when the grating is placed only on the source side. A, B, C, and D are the 1st, 2nd, 3rd, and 4th lowest modes in Fig. 6(c), respectively.

Fig. 8
Fig. 8

Measured transmittance for the metamaterial and grating–metamaterial–grating configuration installed in the parallel plate waveguide (PPW). The height of the PPW corresponds to three periods of the metamaterial in the x direction. Therefore, the cutting plane of the PPW along the xz plane is identical to the plane shown in Fig. 7.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Re ( k spp ) = n k 0 sin θ inc ,
Re ( k spp ) = k x + m 2 π Λ ,

Metrics