Abstract

We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM00-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  2. K. J. Weingarten, D. C. Shannon, R. W. Wallace, and U. Keller, “Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser,” Opt. Lett.15(17), 962–964 (1990).
    [CrossRef] [PubMed]
  3. G. P. A. Malcolm, P. F. Curley, and A. I. Ferguson, “Additive-pulse mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett.15(22), 1303–1305 (1990).
    [CrossRef] [PubMed]
  4. T. Juhasz, S. T. Lai, and M. A. Pessot, “Efficient short-pulse generation from a diode-pumped Nd:YLF laser with a piezoelectrically induced diffraction modulator,” Opt. Lett.15(24), 1458–1460 (1990).
    [CrossRef] [PubMed]
  5. K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state-lasers that use an antiresonant Fabry - Perot saturable absorber,” Opt. Lett.18(8), 640–642 (1993).
    [CrossRef] [PubMed]
  6. M. B. Danailov, G. Cerullo, V. Magni, D. Segala, and S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd:YLF laser,” Opt. Lett.19(11), 792–794 (1994).
    [CrossRef] [PubMed]
  7. S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
    [CrossRef]
  8. S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011).
    [CrossRef]
  9. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  10. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
    [CrossRef]
  11. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
    [CrossRef]
  12. H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008).
    [CrossRef] [PubMed]
  13. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
    [CrossRef] [PubMed]
  14. H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
    [CrossRef]
  15. A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997).
    [CrossRef]
  16. M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
    [CrossRef] [PubMed]
  17. Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
    [CrossRef]
  18. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett.32(18), 2741–2743 (2007).
    [CrossRef] [PubMed]
  19. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
    [CrossRef]
  20. Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express18(9), 9518–9524 (2010).
    [CrossRef] [PubMed]
  21. Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
    [CrossRef]

2011 (3)

S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011).
[CrossRef]

H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
[CrossRef]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

2010 (2)

2008 (1)

2007 (1)

2006 (1)

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997).
[CrossRef]

1996 (2)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

1995 (1)

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

1994 (1)

1993 (1)

1990 (3)

Au, J. A. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

Cerullo, G.

Chen, R. C. C.

Chen, Y. F.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
[CrossRef]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
[CrossRef] [PubMed]

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express18(9), 9518–9524 (2010).
[CrossRef] [PubMed]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008).
[CrossRef] [PubMed]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Chiang, P. Y.

H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
[CrossRef]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

Chiu, T. H.

Cundiff, S. T.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Curley, P. F.

Danailov, M. B.

de Rossi, W.

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

De Silvestri, S.

Fan, Y. X.

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Ferguson, A. I.

Ferguson, J. F.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

He, J. L.

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Hönninger, C.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Hou, Y. E.

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Huang, K. F.

Huang, S. C.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Huang, W. C.

Huang, Y. J.

H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
[CrossRef]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
[CrossRef] [PubMed]

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express18(9), 9518–9524 (2010).
[CrossRef] [PubMed]

H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008).
[CrossRef] [PubMed]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Huang, Y. P.

Y. J. Huang, Y. P. Huang, H. C. Liang, K. W. Su, Y. F. Chen, and K. F. Huang, “Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation,” Opt. Express18(9), 9518–9524 (2010).
[CrossRef] [PubMed]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Juhasz, T.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state-lasers that use an antiresonant Fabry - Perot saturable absorber,” Opt. Lett.18(8), 640–642 (1993).
[CrossRef] [PubMed]

K. J. Weingarten, D. C. Shannon, R. W. Wallace, and U. Keller, “Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser,” Opt. Lett.15(17), 962–964 (1990).
[CrossRef] [PubMed]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Lai, S. T.

Lee, W. L.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Liang, H. C.

Lin, Y. C.

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

Ma, X. Y.

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Magni, V.

Malcolm, G. P. A.

Maldonado, E. P.

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Okishev, A. V.

A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997).
[CrossRef]

Pan, S. D.

S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011).
[CrossRef]

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Paschotta, R.

Pessot, M. A.

Qian, L. J.

Ribeiro, M. S.

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

Segala, D.

Seka, W.

A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997).
[CrossRef]

Shannon, D. C.

Silva, D. F.

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

Su, K. W.

Tang, C. Y.

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

Tang, D. Y.

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

Ueda, K.

Wallace, R. W.

Wang, H. T.

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Wang, Y. G.

S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011).
[CrossRef]

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, “Passively mode-locked diode-pumped solid-state-lasers that use an antiresonant Fabry - Perot saturable absorber,” Opt. Lett.18(8), 640–642 (1993).
[CrossRef] [PubMed]

K. J. Weingarten, D. C. Shannon, R. W. Wallace, and U. Keller, “Two-gigahertz repetition-rate, diode-pumped, mode-locked Nd:YLF laser,” Opt. Lett.15(17), 962–964 (1990).
[CrossRef] [PubMed]

Xie, G. Q.

Zezell, D. M.

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

Zhao, L. M.

Appl. Phys. B (4)

H. C. Liang, Y. J. Huang, P. Y. Chiang, and Y. F. Chen, “Highly efficient Nd:Gd0.6Y0.4VO4 laser by direct in-band pumping at 914 nm and observation of self-mode-locked operation,” Appl. Phys. B103(3), 637–641 (2011).
[CrossRef]

Y. J. Huang, C. Y. Tang, W. L. Lee, Y. P. Huang, S. C. Huang, and Y. F. Chen, “Efficient passively Q-switched Nd:YLF TEM00-mode laser at 1053 nm: selection of polarization with birefringence,” Appl. Phys. B, doi:.
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part I,” Appl. Phys. B61(5), 429–437 (1995).F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning: Part II,” Appl. Phys. B61(6), 569–579 (1995).
[CrossRef]

Y. F. Chen, Y. J. Huang, P. Y. Chiang, Y. C. Lin, and H. C. Liang, “Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers,” Appl. Phys. B103(4), 841–846 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. D. Pan, J. L. He, Y. E. Hou, Y. X. Fan, H. T. Wang, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively CW mode-locked Nd:YLF laser by the LT-In0.25Ga0.75As absorber,” IEEE J. Quantum Electron.42(10), 1097–1100 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

A. V. Okishev and W. Seka, “Diode-pumped Nd:YLF master oscillator for the 30-kJ (UV), 60-beam OMEGA laser facility,” IEEE J. Sel. Top. Quantum Electron.3(1), 59–63 (1997).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. D. Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

M. S. Ribeiro, D. F. Silva, E. P. Maldonado, W. de Rossi, and D. M. Zezell, “Effects of 1047-nm neodymium laser radiation on skin wound healing,” J. Clin. Laser Med. Surg.20(1), 37–40 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. D. Pan and Y. G. Wang, “Diode end-pumped passively mode-locked Nd:YLF laser at 1047 nm using single-wall carbon nanotubes based saturable absorber,” Laser Phys.21(8), 1353–1357 (2011).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (7)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the cavity setup for the diode-pumped self-mode-locked Nd:YLF laser.

Fig. 2
Fig. 2

Output powers for the CW mode locking at 1053 nm and 1047 nm as a function of the incident pump power at 806 nm, where the pulse repetition rate is 2.717 GHz. Inset: two-dimensional spatial distribution of the TEM00 transverse mode for the case of the σ-polarization.

Fig. 3
Fig. 3

Performance of the self-mode-locked Nd:YLF laser at 1053 nm: oscilloscope traces with the time span of (a) 1 μs and (b) 5 ns; RF spectrum with the frequency span of (c) 7 GHz and (d) 10 MHz; (e) autocorrelation trace for d = 8 mm; (f) optical spectrum for d = 8 mm; (g) autocorrelation trace for d = 0.5 mm; (h) optical spectrum for d = 0.5 mm.

Fig. 4
Fig. 4

Performance of the self-mode-locked Nd:YLF laser at 1047 nm: oscilloscope traces with the time span of (a) 1 μs and (b) 5 ns; RF spectrum with the frequency span of (c) 7 GHz and (d) 10 MHz; (e) autocorrelation trace for d = 8 mm; (f) optical spectrum for d = 8 mm; (g) autocorrelation trace for d = 0.5 mm; (h) optical spectrum for d = 0.5 mm.

Metrics