Abstract

The fiber ring resonator (FRR) is the key component of resonator fiber optic gyros (R-FOGs). The configuration of a novel hollow core photonic bandgap fiber (HC-PBF) ring resonator is proposed based on the usage of micro-optical structure. The normalized transfer function of such kind of FRR is derived, and the effects of different FRR parameters’ on the resonant depth, resonant finesse and sensitivity limited by the shot noise of the detector are simulated. The laboratory sample of integrated HC-PBF ring resonator is fabricated and tested experimentally and the optimal scheme is proposed based on the acquired test data. The experimental setup and results verify the feasibility of the micro-optical coupling structure used in the HC-PBF ring resonator and also support the integration and miniaturization of R-FOGs composed of HC-PBFs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, The Fiber-Optic Gyroscope (National Defense Industry & Beijing, 2002), Chap. 2.
  2. N. Barbour, “Inertial components-past, present and future,” presented at 2001 American Institute of Aeronautics & Astronautics Guidance, Navigation and Control Conference, Montreal, Canada, 6–9 Aug. 2001.
  3. S. P. Divakaruni and S. J. Sanders, “Fiber-optic gyros -a compelling choice for high precision applications,” presented at the 18th International Conference on Optical Fiber Sensors, Cancún, Mexico, 23 Oct. 2006.
  4. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
    [CrossRef]
  5. K. Hotate, “Future evolution of fiber optic gyros,” Opt. Rev. 4(1), A28–A34 (1997).
    [CrossRef]
  6. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
    [CrossRef] [PubMed]
  7. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  8. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” presented at the 18th International Conference on Optical Fiber Sensors, Cancún, Mexico, 23 Oct. 2006.
  9. M. A. Terrel, M. J. F. Digonnet, and S. Fan, “Resonator fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
    [CrossRef]
  10. H. K. Kim, M. J. F. Digonnet, and G. S. Kino, “Air-Core Photonic-Bandgap Fiber-Optic Gyroscope,” J. Lightwave Technol. 24(8), 3169–3174 (2006).
    [CrossRef]
  11. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
    [CrossRef]
  12. X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
    [CrossRef]
  13. V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Laser-driven photonic-bandgap fiber optic gyroscope with negligible Kerr-induced drift,” Opt. Lett. 34(7), 875–877 (2009).
    [CrossRef] [PubMed]
  14. T. Dang, G. A. Sanders, and T. Spicer, “Micro-optics photonic bandgap fiber coupler,” United states Patent, US 7680372 B2 (2010).
  15. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
    [CrossRef] [PubMed]

2012 (1)

2010 (1)

X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
[CrossRef]

2009 (1)

2006 (1)

2004 (1)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

1997 (1)

K. Hotate, “Future evolution of fiber optic gyros,” Opt. Rev. 4(1), A28–A34 (1997).
[CrossRef]

1986 (1)

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
[CrossRef]

1984 (1)

1983 (1)

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Bjarklev, A.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Broeng, J.

Dangui, V.

Digonnet, M. J. F.

Ezekiel, S.

Fan, S.

Folkenberg, J. R.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Hansen, T. P.

Higashiguchi, M.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[CrossRef] [PubMed]

Hotate, K.

K. Hotate, “Future evolution of fiber optic gyros,” Opt. Rev. 4(1), A28–A34 (1997).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[CrossRef] [PubMed]

Iwatsuki, K.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4(6), 645–651 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[CrossRef] [PubMed]

Jakobsen, C.

Jin, W.

X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
[CrossRef]

Kim, H. K.

Kino, G. S.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Meyer, R. E.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Nielsen, M. D.

Simonsen, H. R.

Skovgaard, P. M. W.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Stowe, D. W.

Tekippe, V. J.

Terrel, M. A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Vienne, G.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Ying, D. Q.

X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
[CrossRef]

Zhang, X. L.

X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (4)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Rev. (1)

K. Hotate, “Future evolution of fiber optic gyros,” Opt. Rev. 4(1), A28–A34 (1997).
[CrossRef]

Proc. SPIE (1)

X. L. Zhang, W. Jin, and D. Q. Ying, “Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil,” Proc. SPIE 7853, 785324, 785324-9 (2010).
[CrossRef]

Other (5)

T. Dang, G. A. Sanders, and T. Spicer, “Micro-optics photonic bandgap fiber coupler,” United states Patent, US 7680372 B2 (2010).

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” presented at the 18th International Conference on Optical Fiber Sensors, Cancún, Mexico, 23 Oct. 2006.

H. C. Lefèvre, The Fiber-Optic Gyroscope (National Defense Industry & Beijing, 2002), Chap. 2.

N. Barbour, “Inertial components-past, present and future,” presented at 2001 American Institute of Aeronautics & Astronautics Guidance, Navigation and Control Conference, Montreal, Canada, 6–9 Aug. 2001.

S. P. Divakaruni and S. J. Sanders, “Fiber-optic gyros -a compelling choice for high precision applications,” presented at the 18th International Conference on Optical Fiber Sensors, Cancún, Mexico, 23 Oct. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the HC-PBF ring resonator based on micro-optical structure.

Fig. 2
Fig. 2

Resonant depth varies with different optical parameters: (a) reflectivity and coupling loss and (b) laser linewidth.

Fig. 3
Fig. 3

Resonant finesse varies with different optical parameters: (a) reflectivity and coupling loss and (b) laser linewidth.

Fig. 4
Fig. 4

Sensitivity varies with different optical parameters: (a) reflectivity and coupling loss and (b) laser linewidth.

Fig. 5
Fig. 5

(a) HC-PBF ring resonator based on micro-optical structure. (b) SEM photograph of a HC-PBF (cross-section).

Fig. 6
Fig. 6

(a) Experimental setup and (b) resonant curve of the HC-PBF ring resonator based on micro-optical structure.

Fig. 7
Fig. 7

Relation between Rb and the sensitivity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E 4 = E 0 T α e iωt [T e iϕ(t) + R m=1 (1) m1 ( Q ) m1 e iωmt e iϕ(tmτ) ]
T FRR = | E 4 E 1 | 2 = T a 2 ( T 2 + 2TR(cosωτ+Q) 1+ Q 2 +2Qcosωτ + ( R ) 2 1 ( Q ) 2 1 Q 2 1+ Q 2 +2Qcosωτ )
T FRR max = T a 2 ( T 2 + 2TR 1+Q + ( R ) 2 1 ( Q ) 2 1Q 1+Q ) T FRR min = T a 2 ( T 2 2TR 1Q + ( R ) 2 1 ( Q ) 2 1+Q 1Q )
ρ= T FRR max T FRR min T FRR max
F= π cos 1 ( A B 2 +2TRQBA C 2 +2TRQC ATR Q 2 2QAC+2TRB )
ΔΩ λP 4A' 2 Γ SNR

Metrics