Abstract

Liquid microlenses are attractive for adaptive optics because they offer the potential for both high speed actuation and parallelization into large arrays. Yet, in conventional designs, resonances of the liquid and the complexity of driving mechanisms and/or the device architecture have hampered a successful integration of both aspects. Here we present an array of up to 100 microlenses with synchronous modulation of the focal length at frequencies beyond 1 kHz using electrowetting. Our novel concept combines pinned contact lines at the edge of each microlens with an electrowetting controlled regulation of the pressure that actuates all microlenses in parallel. This design enables the development of various shapes of microlenses. The design presented here has potential applications in rapid parallel optical switches, artificial compound eye and three dimensional imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
    [CrossRef]
  2. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
    [CrossRef]
  3. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  4. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
    [CrossRef]
  5. T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011).
    [CrossRef] [PubMed]
  6. H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
    [CrossRef] [PubMed]
  7. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
    [CrossRef]
  8. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
    [CrossRef]
  9. N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
    [CrossRef]
  10. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000).
    [CrossRef]
  11. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
    [CrossRef]
  12. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express14(14), 6557–6563 (2006).
    [CrossRef] [PubMed]
  13. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express17(4), 2487–2499 (2009).
    [CrossRef] [PubMed]
  14. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
    [CrossRef] [PubMed]
  15. J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
    [CrossRef]
  16. A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006).
    [CrossRef] [PubMed]
  17. F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005).
    [CrossRef]
  18. F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008).
    [CrossRef]
  19. D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
    [CrossRef]
  20. E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
    [CrossRef]
  21. H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
    [CrossRef] [PubMed]
  22. J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
    [CrossRef]
  23. I. Roghair, C. U. Murade, J. M. Oh, D. Langevin, D. van den Ende and F. Mugele (article to be submitted).
  24. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  25. Like electrowetting, intergral photography was pioneered by the 1908 Nobel prize winner Gabriel Lippmann. SeeG. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

2012 (1)

J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
[CrossRef]

2011 (5)

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011).
[CrossRef] [PubMed]

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

2010 (1)

J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
[CrossRef]

2009 (3)

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express17(4), 2487–2499 (2009).
[CrossRef] [PubMed]

2008 (3)

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008).
[CrossRef]

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
[CrossRef]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

2007 (2)

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

2006 (4)

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006).
[CrossRef] [PubMed]

2005 (1)

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000).
[CrossRef]

1997 (1)

1908 (1)

Like electrowetting, intergral photography was pioneered by the 1908 Nobel prize winner Gabriel Lippmann. SeeG. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Abeysinghe, D. C.

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Arai, J.

Baret, J. C.

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005).
[CrossRef]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000).
[CrossRef]

Brown, C. V.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

Chan, M. L.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

De Nicola, S.

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Duits, M. H. G.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

Erickson, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Ferraro, P.

Finizio, A.

Grilli, S.

Gu, H.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

Haus, J. W.

Heikenfeld, J.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

Hirsa, A. H.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
[CrossRef]

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

Hoshino, H.

Hou, L. L.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

Jiang, H. R.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Kang, K. H.

J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
[CrossRef]

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

Ko, S. H.

J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
[CrossRef]

Krupenkin, T.

T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011).
[CrossRef] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

Legendre, D.

J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
[CrossRef]

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Li, F.

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008).
[CrossRef]

Lippmann, G.

Like electrowetting, intergral photography was pioneered by the 1908 Nobel prize winner Gabriel Lippmann. SeeG. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

Lohse, D.

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

Lopez, C. A.

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
[CrossRef]

McHale, G.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

Miccio, L.

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

Mugele, F.

J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
[CrossRef]

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008).
[CrossRef]

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006).
[CrossRef] [PubMed]

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005).
[CrossRef]

Murade, C. U.

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

Newton, M. I.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

Oh, J. M.

J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
[CrossRef]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
[CrossRef]

Ohl, C. D.

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

Okano, F.

Paturzo, M.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000).
[CrossRef]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Rathgen, H.

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

Rodriguez, I.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Smith, N. R.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Staicu, A.

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006).
[CrossRef] [PubMed]

Steen, P. H.

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

Sugiyama, K.

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

't Mannetje, D. J. C. M.

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

Taylor, J. A.

T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011).
[CrossRef] [PubMed]

Theisen, E. A.

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

van den Ende, D.

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

Vespini, V.

Vogel, M. J.

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

Wells, G. G.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

Yuyama, I.

Zhang, J. L.

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett.88(4), 041120 (2006).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85(7), 1128–1130 (2004).
[CrossRef]

F. Li and F. Mugele, “How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage,” Appl. Phys. Lett.92(24), 244108 (2008).
[CrossRef]

D. J. C. M. 't Mannetje, C. U. Murade, D. van den Ende, and F. Mugele, “Electrically assisted drop sliding on inclined planes,” Appl. Phys. Lett.98(1), 014102 (2011).
[CrossRef]

Biomicrofluidics (1)

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics5(1), 011101 (2011).
[CrossRef] [PubMed]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E3(2), 159–163 (2000).
[CrossRef]

Europhys. Lett. (1)

J. M. Oh, D. Legendre, and F. Mugele, “Shaken not stirred -On internal flow patterns in oscillating sessile drops,” Europhys. Lett.98(3), 34003 (2012).
[CrossRef]

J. Disp. Technol. (1)

N. R. Smith, L. L. Hou, J. L. Zhang, and J. Heikenfeld, “Fabrication and Demonstration of Electrowetting Liquid Lens Arrays,” J. Disp. Technol.5(11), 411–413 (2009).
[CrossRef]

J. Fluid Mech. (1)

E. A. Theisen, M. J. Vogel, C. A. Lopez, A. H. Hirsa, and P. H. Steen, “Capillary dynamics of coupled spherical-cap droplets,” J. Fluid Mech.580, 495–505 (2007).
[CrossRef]

J. Phys. (1)

Like electrowetting, intergral photography was pioneered by the 1908 Nobel prize winner Gabriel Lippmann. SeeG. Lippmann, “Epreuves reversible donnant la sensation du relief,” J. Phys.7, 821–825 (1908).

J. Phys. Condens. Matter (1)

F. Mugele and J. C. Baret, “Electrowetting: From basics to applications,” J. Phys. Condens. Matter17(28), R705–R774 (2005).
[CrossRef]

Microfluid. Nanofluid. (1)

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008).
[CrossRef]

Nat. Commun. (1)

T. Krupenkin and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nat. Commun.2, 448 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics2(10), 610–613 (2008).
[CrossRef]

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics3(7), 403–405 (2009).
[CrossRef]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Fluids (1)

J. M. Oh, S. H. Ko, and K. H. Kang, “Analysis of electrowetting-driven spreading of a drop in air,” Phys. Fluids22(3), 032002 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

A. Staicu and F. Mugele, “Electrowetting-induced oil film entrapment and instability,” Phys. Rev. Lett.97(16), 167801 (2006).
[CrossRef] [PubMed]

H. Rathgen, K. Sugiyama, C. D. Ohl, D. Lohse, and F. Mugele, “Nanometer-resolved collective micromeniscus oscillations through optical diffraction,” Phys. Rev. Lett.99(21), 214501 (2007).
[CrossRef] [PubMed]

Other (1)

I. Roghair, C. U. Murade, J. M. Oh, D. Langevin, D. van den Ende and F. Mugele (article to be submitted).

Supplementary Material (6)

» Media 1: AVI (268 KB)     
» Media 2: AVI (974 KB)     
» Media 3: AVI (1085 KB)     
» Media 4: AVI (646 KB)     
» Media 5: AVI (3225 KB)     
» Media 6: AVI (479 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microlens array. (a) Schematics of the microlens array, object PCF is placed at a finite distance from the microlens array, the object is illuminated from the top. (b) Image acquired by the microlens array. (c) Side view of the microlens array, the water meniscus is pinned at the lens aperture with lens angle α, as voltage is applied across the bottom electrowetting plate and the top plate (lens aperture) the contact angle of water at the bottom substrate changes which also changes the curvature of the lens meniscus both denoted by dotted red line.

Fig. 2
Fig. 2

Focal length and lens angle α of single lens (diameter: 1.2mm) vs. applied voltage. inset: side view images of the lens and the reservoir drop from low to high voltage (left to right). The bottom half of the lenses are reflections in the top plate.

Fig. 3
Fig. 3

Scanning imaging system. (a) Images of polystyrene particles (diameter 15 µm) placed on both side of a 170 µm thick cover slip focusing on the bottom (i) and top (ii) side, respectively (individual imaging lens; diameter: 1.2mm). (b) Schematics of the single liquid lens imaging the beads, I – V presents sample, liquid lens, microscope objective, lens and CCD camera respectively. (c) Sharpness of the imaged beads (bottom and top) as function of time upon ramping up and down the applied voltage.

Fig. 4
Fig. 4

Synchronized microlens array. (a) Slanted view of the microlens array. (b) Imaging ability of the microlens array. (c) Sharpness plot of the images acquired by each microlens as function of time, indicating the synchronized modulation of the microlens array.

Fig. 5
Fig. 5

High speed actuation of microlens. (a) Sequence of images acquired by the 200 µm aperture single microlens at 3 kHz in amplitude modulation mode. (b) Intensity variation vs. modulation frequency with conventional AC actuation (■) and with amplitude modulation of 10kHz carrier frequency (●). (c) Sharpness vs. normalized time (time x excitation frequency) for a single microlens with aperture diameter 75 µm for modulation frequencies of 10, 15, 17, 20 kHz (bottom to top) in amplitude modulation mode (carrier frequency 60 kHz).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosθ(U)=cos θ Y + ε 0 ε d U 2 2dγ =cos θ Y +η
f= 2h Δn(2cos θ Y +η)

Metrics