Abstract

We report the realization of an open cavity whispering gallery mode optical resonator, in which the circulating light traverses a free space gap. We utilize focused ion beam microfabrication to precisely cut a 10 μm wide notch into the perimeter of a crystalline disc. We have shown that this modified resonator structure supports high quality modes, and demonstrated qualify factor, Q ≃ 106, limited by the notch surface roughness due to the ion milling process. Furthermore, we investigated the spatial profile of the modes inside the open cavity with a microfabricated probe mechanism. This new type of resonator structure facilitates interaction of the cavity’s optical field with mechanical resonators as well as individual atoms or molecules.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
    [CrossRef]
  3. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
    [CrossRef]
  4. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15, 4694–4704 (2007).
    [CrossRef] [PubMed]
  5. S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
    [CrossRef]
  6. S. Sridaran and S. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2011 16th International,” 2920–2923 (2011).
    [CrossRef]
  7. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
    [CrossRef]
  8. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
    [CrossRef]
  9. J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
    [CrossRef]
  10. D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
    [CrossRef]
  11. J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
    [CrossRef]
  12. J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
    [CrossRef]
  13. Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
    [CrossRef]
  14. H.-B. Kim, “Focused ion beam fabrication of curved structures using the concept of beam shaping and variable dwell time,” Microelectron. Eng.88, 3365–3371 (2011).
    [CrossRef]
  15. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
    [CrossRef]
  16. L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).
  17. J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
    [CrossRef]
  18. M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
    [CrossRef]
  19. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17, 1051–1057 (2000).
    [CrossRef]
  20. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24, 723–725 (1999).
    [CrossRef]
  21. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lèfevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q mie modes induced by light backscattering in silica microspheres,” Opt. Lett.20, 1835–1837 (1995).
    [CrossRef] [PubMed]
  22. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
    [CrossRef] [PubMed]
  23. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
    [CrossRef]
  24. M. Ostrowski, P. Pignalosa, H. Smith, and Y. Yi, “Higher-order optical resonance node detection of integrated disk microresonator,” Opt. Lett.36, 3042–3044 (2011).
    [CrossRef] [PubMed]

2012

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

2011

H.-B. Kim, “Focused ion beam fabrication of curved structures using the concept of beam shaping and variable dwell time,” Microelectron. Eng.88, 3365–3371 (2011).
[CrossRef]

M. Ostrowski, P. Pignalosa, H. Smith, and Y. Yi, “Higher-order optical resonance node detection of integrated disk microresonator,” Opt. Lett.36, 3042–3044 (2011).
[CrossRef] [PubMed]

2010

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

2009

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

2008

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

2007

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15, 4694–4704 (2007).
[CrossRef] [PubMed]

2006

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
[CrossRef]

J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
[CrossRef]

2005

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

2004

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
[CrossRef]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

2000

1999

1995

Adibi, A.

Auvray, L.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Baets, R.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
[CrossRef]

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Barea, L. A. M.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Benson, O.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Bhave, S.

S. Sridaran and S. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2011 16th International,” 2920–2923 (2011).
[CrossRef]

Biance, A.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Bienstman, P.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Bourhis, E.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Brambilla, G.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

Broderick, K.

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

Bruchhaus, L.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Butler, J. E.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Choi, Y.-S.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Choquette, K.

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

Claes, T.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

Danner, A.

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

De Vos, K.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

Ding, M.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

Eggleton, B. J.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Frateschi, N. C.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Freeman, D.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Gierak, J.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Gorodetsky, M. L.

Götzinger, S.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Grudinin, I. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
[CrossRef]

Hare, J.

Haroche, S.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Hu, E. L.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Ilchenko, V. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
[CrossRef]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17, 1051–1057 (2000).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24, 723–725 (1999).
[CrossRef]

Janz, S.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Jede, R.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Kawabata, R. M. S.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

Kim, H.-B.

H.-B. Kim, “Focused ion beam fabrication of curved structures using the concept of beam shaping and variable dwell time,” Microelectron. Eng.88, 3365–3371 (2011).
[CrossRef]

Kim, Y.

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
[CrossRef]

Lafosse, X.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Lee, J. C.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Lèfevre-Seguin, V.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Lucot, D.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Luther-Davies, B.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Madden, S.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Madouri, A.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Maleki, L.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
[CrossRef]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24, 723–725 (1999).
[CrossRef]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Mazzei, A.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Menezes, L. de S.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Mialichi, J. R.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Moss, D. J.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Murugan, G. S.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

Ostrowski, M.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Painter, O.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Patriarche, G.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Pignalosa, P.

Pires, M. P.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

Pryamikov, A. D.

Raftery, J.

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

Raimond, J.-M.

Samoc, M.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lèfevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q mie modes induced by light backscattering in silica microspheres,” Opt. Lett.20, 1835–1837 (1995).
[CrossRef] [PubMed]

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Schrauwen, J.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
[CrossRef]

Smith, H.

M. Ostrowski, P. Pignalosa, H. Smith, and Y. Yi, “Higher-order optical resonance node detection of integrated disk microresonator,” Opt. Lett.36, 3042–3044 (2011).
[CrossRef] [PubMed]

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

Soltani, M.

Souza, P. L. D.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
[CrossRef]

Sridaran, S.

S. Sridaran and S. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2011 16th International,” 2920–2923 (2011).
[CrossRef]

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Ta’eed, V. G.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Thourhout, D. V.

J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
[CrossRef]

Ulysse, C.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Vallini, F.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Van Lysebettens, J.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

Van Thourhout, D.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

Vaz, A. R.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Wang, C. F.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Wang, S.

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

Weiss, D. S.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Xu, D.-X.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

Yang, J.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Yao, X. S.

Yegnanarayanan, S.

Yi, Y.

M. Ostrowski, P. Pignalosa, H. Smith, and Y. Yi, “Higher-order optical resonance node detection of integrated disk microresonator,” Opt. Lett.36, 3042–3044 (2011).
[CrossRef] [PubMed]

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

Zervas, M. N.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Zumofen, G.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Wang, K. Broderick, H. Smith, and Y. Yi, “Strong coupling between on chip notched ring resonator and nanoparticle,” Appl. Phys. Lett.97, 051102 (2010).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett.85, 6113–6115 (2004).
[CrossRef]

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion beam milling,” Appl. Phys. Lett.85, 4860–4862 (2004).
[CrossRef]

J. Schrauwen, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides,” Appl. Phys. Lett.89, 141102 (2006).
[CrossRef]

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90, 081110 (2007).
[CrossRef]

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett.100, 081108 (2012).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

ECS Trans.

J. R. Mialichi, L. A. M. Barea, P. L. D. Souza, R. M. S. Kawabata, M. P. Pires, and N. C. Frateschi, “Resonance modes in InAs/InGaAlAs/InP quantum dot microdisk resonators,” ECS Trans.31, 289–293 (2010).
[CrossRef]

IEEE J. Sel. Top. Quant.

Y. Kim, A. Danner, J. Raftery, and K. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quant.11, 1292–1298 (2005).
[CrossRef]

IEEE Photonic. Tech. L.

J. Schrauwen, J. Van Lysebettens, T. Claes, K. De Vos, P. Bienstman, D. Van Thourhout, and R. Baets, “Focused-Ion-Beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photonic. Tech. L.20, 2004–2006 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol.B 27, 2979–2981 (2009).

Microelectron. Eng.

J. Gierak, A. Madouri, A. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng.84, 779–783 (2007).
[CrossRef]

H.-B. Kim, “Focused ion beam fabrication of curved structures using the concept of beam shaping and variable dwell time,” Microelectron. Eng.88, 3365–3371 (2011).
[CrossRef]

Nat. Photonics

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2010).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006).
[CrossRef]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804 (2004).
[CrossRef]

Phys. Rev. Lett.

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett.99, 173603 (2007).
[CrossRef] [PubMed]

Other

S. Sridaran and S. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2011 16th International,” 2920–2923 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images (a,b) of CaF2 FIBED resonator with 50 μm thickness and 1.15 mm radius, and a photograph (c) from above after partial cleaning. Also shown is a close-up SEM image (d) of the 10 μm notch viewed at a slight angle.

Fig. 2
Fig. 2

SEM images of notch surfaces, including top view (a) after the initial coarse milling and the right wall partially milled with finer FIB precision. Images at ×10,000 (right) compare the two notch surfaces after many iterations of ion beam polishing. Left wall (b) exhibits 90 μm surface features while the right (c) has smoother surface finish than the SEM resolution (< 25 μm).

Fig. 3
Fig. 3

Diagram of the optical set-up (a) illustrating the two angle-polished fiber couplers and detectors for the transmitted forward (CW) and backward (CCW) light. A photograph with red light coupled (b) shows the fiber couplers and scattering from the notch on top.

Fig. 4
Fig. 4

Optical frequency scans of FIBED resonator transmission show (a) the entire free spectral range, FSR ≃ 29 GHz, and (b) a high-Q mode with Lorentzian fit (red), Γ = 194 MHz, corresponding to Q ≃ 106. The wavelength plot (c) shows the linewidth dependence fit to λ−4 (dashed) expected in the Rayleigh scattering limited regime.

Fig. 5
Fig. 5

Probing the optical modes with (a) 5μm-thick gold wire tip. This micro beam-block introduces losses as it is inserted radially (b) into the gap from just outside the perimeter. The mode amplitude plot (c) shows a mode (blue) attenuated within the first 4 μm of insertion depth, while another (red) exists deeper in the WGMR.

Metrics