Abstract

We experimentally demonstrate a novel structural long-period grating by helically coiling one microfiber onto another with the relatively thicker diameter. Owing to the strong periodic modulation of the coiled microfiber to the evanescent field of the straight microfiber, a resonance transmission notch of ~16.2 dB can be induced for a compact device length of ~450μm only (4 helical periods). Moreover, the filtered light energy from the straight fiber can emerge again at the output of the coiled one, providing great flexibility in producing new device functions. The spectral response to external strain is investigated and wide wavelength tuning range of around 106nm is discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
    [CrossRef]
  2. S. W. James and R. P. Tatam, “Optical fiber long–period gratings sensors:characteristics and application,” Meas. Sci. Technol.14(5), 49–61 (2003).
    [CrossRef]
  3. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol.21(5), 1320–1327 (2003).
    [CrossRef]
  4. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett.24(18), 1263–1265 (1999).
    [CrossRef] [PubMed]
  5. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett.25(10), 710–712 (2000).
    [CrossRef] [PubMed]
  6. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett.29(13), 1464–1466 (2004).
    [CrossRef] [PubMed]
  7. C. Jáuregui and J. M. López-Higuera, “Virtual long-period gratings,” Opt. Lett.30(1), 14–16 (2005).
    [CrossRef] [PubMed]
  8. V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev, O. I. Medvekov, and R. R. Khrapko, “Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers,” in Digest of European Conference on Optical Communication (Institute of Electrical Engineers, London, 1997), paper 2–56.
  9. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  10. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 1–19 (2010).
    [CrossRef]
  11. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fibrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009).
    [CrossRef]
  12. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).
  13. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol.20(2), 255–266 (2002).
    [CrossRef]
  14. H. F. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express17(24), 21882–21890 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21882 .
    [CrossRef] [PubMed]
  15. H. F. Xuan, W. Jin, and S. J. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett.35(1), 85–87 (2010).
    [CrossRef] [PubMed]

2010

2009

2005

2004

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

S. W. James and R. P. Tatam, “Optical fiber long–period gratings sensors:characteristics and application,” Meas. Sci. Technol.14(5), 49–61 (2003).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol.21(5), 1320–1327 (2003).
[CrossRef]

2002

2000

1999

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

1991

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bennion, I.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Brambilla, G.

Chung, Y.

Digonnet, M. J. F.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Feng, X.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Horak, P.

Hwang, I. K.

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long–period gratings sensors:characteristics and application,” Meas. Sci. Technol.14(5), 49–61 (2003).
[CrossRef]

Jáuregui, C.

Jin, W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Jung, Y.

Kim, B. Y.

Kino, G. S.

Koizumi, F.

Koukharenko, E.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Lee, K. R.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Liu, S. J.

López-Higuera, J. M.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Murugan, G. S.

Oh, S.

Paek, U. C.

Ran, Z. L.

Rao, Y. J.

Richardson, D. J.

Savin, S.

Sessions, N. P.

Shaw, H. J.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shu, X. W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long–period gratings sensors:characteristics and application,” Meas. Sci. Technol.14(5), 49–61 (2003).
[CrossRef]

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long–period fiber gratings as band–rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Wang, Y. P.

Wilkinson, J. S.

Xu, F.

Xuan, H. F.

Yun, S. H.

Zhang, L.

Zhang, M.

Zhu, T.

Adv. Opt. Photon.

IEEE Proc. J.: Optoelectron.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proc. J.: Optoelectron.138, 343–354 (1991).

J. Lightwave Technol.

J. Opt.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 1–19 (2010).
[CrossRef]

Meas. Sci. Technol.

S. W. James and R. P. Tatam, “Optical fiber long–period gratings sensors:characteristics and application,” Meas. Sci. Technol.14(5), 49–61 (2003).
[CrossRef]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

V. I. Karpov, M. V. Grekov, E. M. Dianov, K. M. Golant, S. A. Vasiliev, O. I. Medvekov, and R. R. Khrapko, “Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers,” in Digest of European Conference on Optical Communication (Institute of Electrical Engineers, London, 1997), paper 2–56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the proposed LPG. Inset shows the cross-sectional view of the structure. (b) Microscopic image of the fabricated structure. The bright spots correspond to the points when the coiled microfiber is bent behind the straight microfiber.

Fig. 2
Fig. 2

Evolution of transmission spectra in respect of the period number N, for the two LPGs with different parameters: (a) d1 = 7.05μm, d2 = 3.1μm, and Λ = 120μm; (b) d1 = 5.8μm, d2 = 3.4μm, and Λ = 112μm. The transmission notches correspond to the coupling between the LP01 modes of the two microfibers.

Fig. 3
Fig. 3

Transmission characteristics of the LPG with d1 = 5.8μm, d2 = 3.4μm, Λ = 112μm, and N = 4.

Fig. 4
Fig. 4

(a) Resonance wavelength as a function of the axial strain. (b) The transmission spectra corresponding to the strains: 0 με (solid curve), 5150 με (broken curve), and 10300με (dashed curve).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 1 β 2 =2π/Λ,

Metrics