Abstract

Periodic rectangular gold nanomonopoles and nanodipoles in a piecewise inhomogeneous background, consisting of a silicon substrate and a dielectric (aqueous) cover, have been investigated extensively via 3D finite-difference time-domain simulations. The transmittance, reflectance and absorptance response of the nanoantennas were studied as a function of their geometry (length, width, thickness, gap) and found to vary very strongly. The nanoantennas were found to resonate in a single surface plasmon mode supported by the corresponding rectangular cross-section nanowire waveguide, identified as the sab0 mode [Phys. Rev. B 63, 125417 (2001)]. We determine the propagation characteristics of this mode as a function of nanowire cross-section and wavelength, and we relate the modal results to the performance of the nanoantennas. An approximate expression resting on modal results is proposed for the resonant length of nanomonopoles, and a simple equivalent circuit, also resting on modal results, but involving transmission lines and a capacitor (modelling the gap) is proposed to determine the resonant wavelength of nanodipoles. The expression and the circuit yield results that are in good agreement with the full computations, and thus will prove useful in the design of nanoantennas.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  2. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [CrossRef] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
    [CrossRef]
  4. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  5. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [CrossRef]
  6. E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
    [CrossRef]
  7. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [CrossRef] [PubMed]
  8. P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
    [CrossRef]
  9. A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [CrossRef]
  10. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [CrossRef]
  11. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
    [CrossRef]
  12. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
    [CrossRef] [PubMed]
  13. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
    [CrossRef]
  14. W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
    [CrossRef] [PubMed]
  15. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
    [CrossRef] [PubMed]
  16. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
    [CrossRef] [PubMed]
  17. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [CrossRef] [PubMed]
  18. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  19. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  20. FDTD Solutions v. 7.5.6, Lumerical Solutions Inc., Vancouver, Canada.
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  22. D. J. Segelstein, The complex refractive index of water, M.Sc. Thesis, University of Missouri – Kansas City, 1981.
  23. R. C. Boonton, Jr., Computational Methods for Electromagnetics and Microwaves (Wiley-Interscience, 1992)
  24. T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microw. Theory Tech. 22(11), 946–952 (1974).
    [CrossRef]
  25. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  26. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [CrossRef]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
    [CrossRef]
  28. D. M. Pozar, Microwave Engineering (Wiley, 2005).
  29. H. G. Booker, Electromagnetism (Peter Peregrinus, 1982).

2012 (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[CrossRef] [PubMed]

2010 (1)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

2009 (6)

E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
[CrossRef] [PubMed]

2008 (5)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16(21), 16529–16537 (2008).
[CrossRef] [PubMed]

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

2005 (2)

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

1974 (1)

T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microw. Theory Tech. 22(11), 946–952 (1974).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Bachelot, R.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
[CrossRef] [PubMed]

Barnard, E. S.

Baudrion, A.-L.

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Bharadwaj, P.

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Brongersma, M. L.

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

Chandran, A.

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

Deutsch, B.

Ding, W.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
[CrossRef] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Duó, L.

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

Espiau de Lamaestre, R.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Finazzi, M.

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Fischer, H.

Gagnon, D. S. L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Huang, J.

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

Itoh, T.

T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microw. Theory Tech. 22(11), 946–952 (1974).
[CrossRef]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Kostcheev, S.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Macias, D.

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Royer, P.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, “Understanding near/far-field engineering of optical dimer antennas through geometry modification,” Opt. Express 17(23), 21228–21239 (2009).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Savoini, M.

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[CrossRef] [PubMed]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[CrossRef] [PubMed]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[CrossRef] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

White, J. S.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

E. Cubukcu and F. Capasso, “Optical nanorods antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microw. Theory Tech. 22(11), 946–952 (1974).
[CrossRef]

J. Appl. Phys. (1)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. Espiau de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[CrossRef]

Nano Lett. (3)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Perot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Nat. Photonics (4)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. L. Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (4)

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. Garcia de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[CrossRef]

P. Biagioni, M. Savoini, J. Huang, L. Duó, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other (6)

FDTD Solutions v. 7.5.6, Lumerical Solutions Inc., Vancouver, Canada.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

D. J. Segelstein, The complex refractive index of water, M.Sc. Thesis, University of Missouri – Kansas City, 1981.

R. C. Boonton, Jr., Computational Methods for Electromagnetics and Microwaves (Wiley-Interscience, 1992)

D. M. Pozar, Microwave Engineering (Wiley, 2005).

H. G. Booker, Electromagnetism (Peter Peregrinus, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Geometry of a unit cell of the system under study: an Au rectangular dipole antenna on a silicon substrate covered by water. An x-polarized plane wave source illuminates the antenna in the z-direction from the substrate.

Fig. 2
Fig. 2

(a) Transmittance, (b) reflectance and (c) absorptance versus wavelength for monopoles of w = 20 nm, t = 40 nm and variable l (given in legend inset to (a)).

Fig. 3
Fig. 3

(a) Transmittance, (b) reflectance and (c) absorptance versus wavelength for monopole antennas of l = 110 nm, t = 40 nm and variable w (given in legend inset to (a)).

Fig. 4
Fig. 4

(a) Transmittance, (b) reflectance, and (c) absorptance versus wavelength for monopole antennas of l = 110 nm, w = 20 nm and variable t (given in legend inset to (a)).

Fig. 5
Fig. 5

(a) Transmittance, (b) reflectance and (c) absorptance versus wavelength for a dipole of g = 20 nm, w = 10 nm, t = 40 nm, p = q = 300 nm and variable l (given in legend inset to (a)). Part (d) shows |Ex|/|Einc| where Ex is taken at x = 0, y = 0, z = 3 nm on resonance and Einc is the incident field at the same location and wavelength in the absence of the antenna.

Fig. 6
Fig. 6

|Ex| along the length of the antenna for different l values (given in legend in inset); |Ex| is also shown in the absence of the antenna.

Fig. 7
Fig. 7

| E |= | E x | 2 + | E y | 2 + | E z | 2 on the x-y plane 3 nm inside gold dipoles of dimensions (a) l = 190 nm, (b) l = 240 nm, (c) l = 280 nm, and w = 20 nm, t = 40 nm, p = q = 300 nm, g = 20 nm at λ = 1495 nm, which is the resonance wavelength of case (b).

Fig. 8
Fig. 8

(a) Transmittance, (b) reflectance and (c) absorptance versus wavelength for dipole antennas of l = 210 nm, w = 20 nm, t = 40 nm, p = q = 300 nm and variable g (given in legend inset to (a)). Part (d) plots |Ex|/|Einc| where Ex is taken at x = 0, y = 0, z = 3 nm on resonance and Einc is the incident field at the same location and wavelength but with the antenna removed.

Fig. 9
Fig. 9

| E |= | E x | 2 + | E y | 2 + | E z | 2 on the x-y plane 3 nm inside a gold dipole having l = 210 nm, w = 20 nm, t = 40 nm and p = q = 300 nm for (a) g = 4 nm, (b) g = 20 nm and (c) g = 44 nm.

Fig. 10
Fig. 10

(a) Transmittance, (b) reflectance and (c) absorptance versus wavelength for dipole antennas of l = 210 nm, t = 40 nm, g = 20 nm, p = q = 300 nm and variable w (given in legend inset to (a)). Part (d) plots |Ex|/|Einc|, where Ex is taken at x = 0, y = 0, z = 3 nm on resonance and Einc is the incident field at the same location and wavelength in the absence of the antenna.

Fig. 11
Fig. 11

| E |= | E x | 2 + | E y | 2 + | E z | 2 on the x-y plane 3 nm inside a gold dipole having l = 210 nm, g = 20 nm, t = 40 nm and p = q = 300 nm for (a) w = 4 nm, (b) w = 20 nm and (c) w = 36 nm.

Fig. 12
Fig. 12

λ res =2 L eff n eff on the y-z plane at the middle of a gold dipole arm having l = 210 nm, g = 20nm, t = 40 nm and p = q = 300 nm for (a) w = 4 nm, (b) w = 20 nm and (c) w = 60 nm.

Fig. 13
Fig. 13

(a) Transmittance, (b) reflectance, and (c) absorptance versus wavelength for dipole antennas of l = 210 nm, w = 20 nm, g = 20 nm, p = q = 300 nm and variable t (given in legend inset to (a)). Part (d) plots |Ex|/|Einc|, where Ex is taken at x = 0, y = 0, z = 3 nm on resonance and Einc is the incident field at the same location and wavelength in the absence of the antenna.

Fig. 14
Fig. 14

| E |= | E x | 2 + | E y | 2 + | E z | 2 on the y-z plane at the middle of a gold dipole arm having l = 210 nm, g = 20 nm, w = 20 nm and p = q = 300 nm for (a) t = 30 nm, (b) t = 50 nm and (c) t = 70 nm.

Fig. 15
Fig. 15

Transmittance, reflectance and absorptance of an array of dipoles, using (a) the full material properties of silicon, gold and water, and (b) forcing the imaginary part of the permittivity of gold to zero.

Fig. 16
Fig. 16

FWHM of the absorptance response as a function of (a) length l, (b) gap g, (c) width w, and (d) thickness t. The left axis shows the FWHM calculated as Δλ and the right axis shows the corresponding Δυ.

Fig. 17
Fig. 17

Electric field Ex along the x-axis of a monopole of l = 210 nm, w = 20 nm, t = 40 nm and p = q = 300 nm, at y = 0 for several heights z (indicated in the legend). The average of Ex at the z locations of this figure (and for z = 15 and 25 nm) is also shown. The inset shows Ex at the physical end of the antenna, where the field is discontinuous.

Fig. 18
Fig. 18

(a)-(c) Electric field distribution of a surface plasmon mode plotted over the cross-section of a nanowire waveguide (w = 20 nm, t = 40 nm and λres = 2268 nm) computed using a mode solver. (d)-(f) Electric field distribution over a cross-section of the corresponding monopole antenna computed using the FDTD. (a) and (d) Re{Ey}, (b) and (e) Re{Ez}, (c) and (f) Im{Ex}.

Fig. 19
Fig. 19

Effective refractive index and attenuation of the mode resonating in the antennas as a function of (a) width using t = 40 nm and (b) thickness using w = 20 nm, at λ = 1400 nm.

Fig. 20
Fig. 20

(a) Effective index and (b) attenuation versus wavelength calculated from modal analysis for a nanowire waveguide of cross-section w = 20 nm by t = 40 nm.

Fig. 21
Fig. 21

Transmission line model of the dipole where the gap is modeled as a parallel-plate capacitor.

Fig. 22
Fig. 22

Wave impedance Re{Zw} over the y-z cross-section of the nanowire.

Fig. 23
Fig. 23

λres obtained from FDTD analysis and from the transmission line model (Eq. (9)) for a dipole of l = 210 nm, (a) w = 20 nm, t = 40 nm and variable g, (b) g = 20 nm, t = 40 nm and variable w, and (c) g = 20 nm, w = 20 nm and variable t.

Tables (2)

Tables Icon

Table 1 Results of the Modal Analysis

Tables Icon

Table 2 Estimated Lengths of Monopoles

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T( f )= S Re{ P m (f) }ds / S Re{ P s (f) }ds
Δv= c λ res 2 Δλ
L eff =l+2 δ a
λ res n eff
λ res =2 L eff n eff
l est L eff 2 δ m
β= n eff ω ε 0 μ 0
C g = ε H 2 O A d /g
Z IN (1) =j Z 0 cot( β( d+ δ m ) )
Z IN (2) = j ω C g j Z 0 cot( β( d+ δ m ) )
tan( n eff ω res ε 0 μ 0 ( d+ δ m ) )=2 ω res C g Z 0
ω res =2πc/ λ res
Z w = k ^ ( E× H * ) ( k ^ ×H )( k ^ × H * )
Z 0 = f(y,z)Re{ Z w (y,z) }ds / f( y,z )ds  
f( y,z )= | E y (y,z) | 2 + | E z (y,z) | 2

Metrics