Abstract

The design and experimental demonstration of a snapshot hyperspectral imaging Fourier transform (SHIFT) spectrometer is presented. The sensor, which is based on a multiple-image FTS (MFTS), offers significant advantages over previous implementations using Michelson interferometers. Specifically, its use of birefringent interferometry creates a vibration insensitive and ultra-compact (15x15x10 mm3) common-path interferometer while offering rapid reconstruction rates through the graphics processing unit. The SHIFT spectrometer’s theory and experimental prototype are described in detail. Included are reconstruction and spectral calibration procedures, followed by the spectrometer’s validation using measurements of gas-discharge lamps. Lastly, outdoor measurements demonstrate the sensor’s ability to resolve spectral signatures in typical outdoor lighting and environmental conditions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
    [CrossRef]
  2. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006).
    [CrossRef] [PubMed]
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  4. R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).
  5. P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
    [CrossRef]
  6. J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot LWIR imager,” in Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd, 1–5 (2010).
  7. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
    [CrossRef] [PubMed]
  8. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
    [CrossRef]
  9. M. R. Descour and E. L. Dereniak, “Nonscanning no-moving-parts imaging spectrometer,” Proc. SPIE2480, 48–64 (1995).
    [CrossRef]
  10. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt.36(16), 3694–3698 (1997).
    [CrossRef] [PubMed]
  11. D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt.7(6), S298–S302 (2005).
    [CrossRef]
  12. N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
    [CrossRef]
  13. M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
    [CrossRef]
  14. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express18(6), 5602–5608 (2010).
    [CrossRef] [PubMed]
  15. M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt.49(21), 4067–4076 (2010).
    [CrossRef] [PubMed]
  16. J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007).
    [CrossRef]
  17. A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
    [CrossRef]
  18. M. Francon and S. Mallick, Polarization Interferometers (John Wiley & Sons Ltd., 1971).
  19. C. C. Montarou and T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt.38(31), 6604–6616 (1999).
    [CrossRef] [PubMed]
  20. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express11(13), 1510–1519 (2003).
    [CrossRef] [PubMed]
  21. J. Van Delden, U.S. Patent No. 6,674,532 B2, Jan. 6, 2004.
  22. M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE7812, 781206, 781206-11 (2010).
    [CrossRef]
  23. V. Saptari, Fourier-transform spectroscopy instrumentation engineering (SPIE Press, 2004).
  24. J. Renau, P. K. Cheo, and H. G. Cooper, “Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectrics,” J. Opt. Soc. Am.57(4), 459–466 (1967).
    [CrossRef] [PubMed]
  25. J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in Proceedings of the Second European Conference on Computer Vision, Springer-Verlag 588, 237–252, (1992).
  26. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express12(22), 5368–5374 (2004).
    [CrossRef] [PubMed]
  27. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc.41(7), 1182–1184 (1987).
    [CrossRef]
  28. E. A. Stubley and G. Horlick, “Measurement of inductively coupled plasma emission spectra using a Fourier transform spectrometer,” Appl. Spectrosc.39(5), 805–810 (1985).
    [CrossRef]

2011 (1)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (1)

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

2008 (1)

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

2007 (2)

J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007).
[CrossRef]

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

2006 (3)

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006).
[CrossRef] [PubMed]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
[CrossRef] [PubMed]

2005 (1)

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt.7(6), S298–S302 (2005).
[CrossRef]

2004 (2)

R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).

A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express12(22), 5368–5374 (2004).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

1997 (1)

1995 (1)

M. R. Descour and E. L. Dereniak, “Nonscanning no-moving-parts imaging spectrometer,” Proc. SPIE2480, 48–64 (1995).
[CrossRef]

1994 (1)

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

1987 (1)

1985 (1)

1978 (1)

P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
[CrossRef]

1967 (1)

Beaven, S.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

Bedard, N.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

Biradar, C. M.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Bodkin, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

Boreman, D. G,

R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).

Chenault, D. B.

Cheo, P. K.

Cooper, H. G.

Daly, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

De Li, M.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

Dereniak, E. L.

Descour, M. R.

Dillon, P. L. P.

P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
[CrossRef]

Fletcher-Holmes, D. W.

Gao, L.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

Garman, J.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

Gat, N.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

Gaylord, T. K.

Geerken, R.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Gerhart, G. R.

Gleeson, T. M.

Glenn Stellar, R.

R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).

Goldstein, D. L.

Gorman, A.

Harvey, A. R.

Hirai, A.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

Hopkins, M. F.

Horlick, G.

Ichioka, Y.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

Inoue, T.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

Itoh, K.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

Jungwirth, M. E. L.

Kaneko, T.

Kaspar, F. G.

P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
[CrossRef]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

Kise, M.

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

Kudenov, M. W.

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE7812, 781206, 781206-11 (2010).
[CrossRef]

M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt.49(21), 4067–4076 (2010).
[CrossRef] [PubMed]

Lawrence, K. C.

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

Levenson, R. M.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006).
[CrossRef] [PubMed]

Lewis, D. M.

P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
[CrossRef]

Maker, P. D.

Mansfield, J. R.

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006).
[CrossRef] [PubMed]

Mathews, S. A.

J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007).
[CrossRef]

Montarou, C. C.

Noojipady, P.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Norton, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

Oka, K.

Park, B.

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

Platonov, A.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Ramella-Roman, J. C.

J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007).
[CrossRef]

Renau, J.

Scriven, G.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

Shaw, J. A.

Sheinis, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

Stubley, E. A.

Thenkabail, P. S.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Tkaczyk, T. S.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

Turral, H.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Tyo, J. S.

Vithanage, J.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Voigtman, E.

Volin, C. E.

Weinheimer, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

Wilson, D. W.

Windham, W. R.

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

Winefordner, J. D.

Xiao, X.

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

Zhang, J.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (2)

Cytometry A (1)

R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A69(8), 748–758 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. C. Ramella-Roman and S. A. Mathews, “Spectroscopic measurements of oxygen saturation in the retina,” IEEE J. Sel. Top. Quantum Electron.13(6), 1697–1703 (2007).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

P. L. P. Dillon, D. M. Lewis, and F. G. Kaspar, “Color imaging system using a single CCD area array,” IEEE Trans. Electron. Dev.25(2), 102–107 (1978).
[CrossRef]

J. Appl. Remote Sens. (1)

C. M. Biradar, P. S. Thenkabail, A. Platonov, X. Xiao, R. Geerken, P. Noojipady, H. Turral, and J. Vithanage, “Water productivity mapping methods using remote sensing,” J. Appl. Remote Sens.2(1), 023544 (2008).
[CrossRef]

J. Biomed. Opt. (1)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt.7(6), S298–S302 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

R. Glenn Stellar and D. G, Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng.44, 013602 (2004).

Opt. Express (3)

Opt. Rev. (1)

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev.1(2), 205–207 (1994).
[CrossRef]

Proc. SPIE (5)

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging – the hyperpixel array camera,” Proc. SPIE7334, 73340H, 73340H-11 (2009).
[CrossRef]

M. R. Descour and E. L. Dereniak, “Nonscanning no-moving-parts imaging spectrometer,” Proc. SPIE2480, 48–64 (1995).
[CrossRef]

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometer,” Proc. SPIE6302, 63020M, 63020M-11 (2006).
[CrossRef]

M. Kise, B. Park, K. C. Lawrence, and W. R. Windham, “Compact multi-spectral imaging system for contaminant detection on poultry carcass,” Proc. SPIE6503, 650305, 650305-11 (2007).
[CrossRef]

M. W. Kudenov and E. L. Dereniak, “Compact snapshot birefringent imaging Fourier transform spectrometer,” Proc. SPIE7812, 781206, 781206-11 (2010).
[CrossRef]

Other (5)

V. Saptari, Fourier-transform spectroscopy instrumentation engineering (SPIE Press, 2004).

J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in Proceedings of the Second European Conference on Computer Vision, Springer-Verlag 588, 237–252, (1992).

J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot LWIR imager,” in Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd, 1–5 (2010).

M. Francon and S. Mallick, Polarization Interferometers (John Wiley & Sons Ltd., 1971).

J. Van Delden, U.S. Patent No. 6,674,532 B2, Jan. 6, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The Multiple-image Fourier Transform Spectrometer (MFTS), as originally described by Hirai. Acronyms: Beamsplitter (BS), Focal Plane Array (FPA), M1 (Mirror 1), and M2 (Mirror 2).

Fig. 2
Fig. 2

(a) A BPI based on Nomarski prisms (NP). The fringe localization (FL) plane is compensated and coincident with the focal plane array (FPA). (b) The rotated Generating polarizer (G), NPs, and Analyzer (A) are placed on the FPA behind an N×M lenslet array.

Fig. 3
Fig. 3

Ray tracing results of a Nomarski prism with and without inclusion of the HWP.

Fig. 4
Fig. 4

(a) Linear OPD (μm) as a function of FPA position in pixels (pix). (b) Illustration of the construction of the 3D data cube with dimensions (xi, yi, OPD) from the sampled sub-images.

Fig. 5
Fig. 5

Side profile of the birefringent interferometer without the lenslet array. All dimensions are in mm and α = 3.15μ.

Fig. 6
Fig. 6

Side profile of the SHIFT spectrometer for one lenslet in the array. The x and y polarization states are demonstrated as blue and green lines, respectively, for the two respective Zemax configurations that were used in the simulations.

Fig. 7
Fig. 7

Simulated interference pattern for 3x3 lenslets. (a) γ = 0.44 mm, (b) γ = 0.69 mm, and (c) γ = 0.94 mm.

Fig. 8
Fig. 8

One-dimensional cross-section of the two-dimensional data, depicted previously in Fig. 7, across the (a) columns and (b) rows. The light gray lines indicate boundaries between adjacent sub-images and cross-sections were extracted along the red dashed lines per Fig. 7. (c) Spatial frequency, in cycles per mm, as a function of defocus.

Fig. 9
Fig. 9

(a) The SHIFT spectrometer’s optical schematic. Acronyms: Objective Lens (OL), Collimating Lens (CL), Aperture Array (AA), and Lens Array (LA). (b) Benchtop image.

Fig. 10
Fig. 10

Interference fringes generated by viewing through the exit port of an integrating sphere that is illuminated by (a) a white-light tungsten halogen lamp and (b) a HeNe laser.

Fig. 11
Fig. 11

Spectrally band integrated image of the scene, from the SHIFT spectrometer, containing the gas discharge lamps. The numbers identify the type of emission source as follows: 1 – Na; 2 – Ne; 3 – Hg.

Fig. 12
Fig. 12

(a) Spectral data from the SHIFT (blue solid line) and Ocean Optics (black dashed lines) spectrometers. (b) 2D spectral slices from the 3D datacube at various wavelengths (nm).

Fig. 13
Fig. 13

(a) Red, green, and blue composite image that was generated using the SHIFT spectrometer’s data. (b) Full-resolution spectra for a traffic light, car, and grass.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

OPD=2Bxtan( α ),
δ= tan 1 ( 1/M ).
OP D 2 ( x,y ) n,m =4Btan( α e )( ( x+ x 0 )cos( δ )ysin( δ ) )+ ( nΔ ϕ n +mΔ ϕ m ) / 2π σ c ,
I( x,y )= 1 2 ( 1+cos( 2π σ c OP D 2 ( x,y ) n,m ) ).
OPD=OP D c B( σ 1 ) B( σ c ) ,
σ 2 = σ 1 B( σ c ) B( σ 1 ) .

Metrics