Abstract

A method of asynchronous optical sampling based on free-running lasers with no requirement on the repetition rates is presented. The method is based on the a posteriori determination of the delay between each pair of pulses. A resolution better than 400 fs over 13 ns total delay scan is demonstrated. In addition to the advantages of conventional asynchronous sampling techniques, this method allows a straightforward implementation on already-existing laser systems using a fiber-based setup and an appropriate acquisition procedure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
    [CrossRef]
  2. M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968).
    [CrossRef]
  3. E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
    [CrossRef]
  4. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump probe method for fast analysis of visible spectral signatures utilizing asynchronous optical-sampling,” Appl. Opt.26, 4303–4309 (1987).
    [CrossRef] [PubMed]
  5. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump probe spectroscopy by asynchronous optical-sampling,” Appl. Spectrosc.41, 2–4 (1987).
    [CrossRef]
  6. J. D. Kafka, J. W. Pieterse, and M. L. Watts, “2-color subpicosecond optical-sampling technique,” Opt. Lett.17, 1286–1288 (1992).
    [CrossRef] [PubMed]
  7. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29, 1542–1544 (2004).
    [CrossRef] [PubMed]
  8. D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
    [CrossRef]
  9. Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999).
    [CrossRef]
  10. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
    [CrossRef]
  11. F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
    [CrossRef]
  12. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express18, 5974–5983 (2010).
    [CrossRef] [PubMed]
  13. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13, 9029–9038 (2005).
    [CrossRef] [PubMed]
  14. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
    [CrossRef]
  15. C. Janke, M. Forst, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30, 1405–1407 (2005).
    [CrossRef] [PubMed]
  16. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
    [CrossRef]
  17. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express14, 430–437 (2006).
    [CrossRef] [PubMed]
  18. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett.27, 766–768 (2002).
    [CrossRef]
  19. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
    [CrossRef]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
    [CrossRef] [PubMed]
  21. S. Kray, F. Spoler, M. Forst, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett.33, 2092–2094 (2008).
    [CrossRef] [PubMed]
  22. J. D. Deschenes, P. Giaccari, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express18, 23358–23370 (2010).
    [CrossRef] [PubMed]
  23. I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett.35, 1395–1397 (2010).
    [CrossRef] [PubMed]
  24. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
    [CrossRef]
  25. J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
    [CrossRef]
  26. A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
    [CrossRef]
  27. J. Davila-rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol.29, 3091–3098 (2011).
    [CrossRef]
  28. L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).
  29. M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol.23, 1088–1099 (2005).
    [CrossRef]
  30. T. Mori and A. Otani, “A Simple Synchronization Method for Optical Sampling Eye Monitor,” Jpn. J. Appl. Phys.49, 070208 (2010).
    [CrossRef]
  31. K. Dou, A. Débarre, J.-L. Le Gouët, I. Lorgeré, and P. Tchénio, “Field cross correlator for analysis of ultrafast signals,” Appl. Opt.33, 7980–7986 (1994).
    [CrossRef] [PubMed]

2011

2010

2009

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

2008

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

S. Kray, F. Spoler, M. Forst, and H. Kurz, “Dual femtosecond laser multiheterodyne optical coherence tomography,” Opt. Lett.33, 2092–2094 (2008).
[CrossRef] [PubMed]

2006

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express14, 430–437 (2006).
[CrossRef] [PubMed]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
[CrossRef]

2005

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
[CrossRef]

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

M. Westlund, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Software-synchronized all-optical sampling for fiber communication systems,” J. Lightwave Technol.23, 1088–1099 (2005).
[CrossRef]

C. Janke, M. Forst, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30, 1405–1407 (2005).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13, 9029–9038 (2005).
[CrossRef] [PubMed]

2004

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29, 1542–1544 (2004).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
[CrossRef]

2003

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

2002

1999

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999).
[CrossRef]

1998

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

1996

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

1994

1992

1987

1977

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
[CrossRef]

1968

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968).
[CrossRef]

Adachi, S.

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999).
[CrossRef]

Ahn, Y. H.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Andrekson, P. A.

Araki, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
[CrossRef]

Audouin, O.

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Bagnell, M.

Bartels, A.

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Bredenbeck, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
[CrossRef]

Brehm, M.

Bruchhausen, A.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Cao, W. X.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Cérou, F.

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Champion, P. M.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett.35, 1395–1397 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Davila-rodriguez, J.

Débarre, A.

Dekorsy, T.

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express18, 5974–5983 (2010).
[CrossRef] [PubMed]

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express14, 430–437 (2006).
[CrossRef] [PubMed]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
[CrossRef]

Delfyett, P. J.

Deschenes, J. D.

Dorr, F.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
[CrossRef]

Dorrer, C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

Dou, K.

Dreyhaupt, A.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968).
[CrossRef]

Elzinga, P. A.

Erbe, A.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Fermann, M. E.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

Forst, M.

Gebs, R.

Genest, J.

Giaccari, P.

Gohle, C.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Hamm, P.

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
[CrossRef]

Hansch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968).
[CrossRef]

Harter, D. J.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

Helbing, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
[CrossRef]

Helm, M.

Hofer, M.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

Hohng, S. C.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29, 1542–1544 (2004).
[CrossRef] [PubMed]

Hudert, F.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
[CrossRef]

Huntzinger, J. R.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Ionascu, D.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Issenmann, D.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Janke, C.

Jho, Y. D.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Jian, Y.

Jiang, Y.

Kabetani, Y.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Kafka, J. D.

Karlsson, M.

Keilmann, F.

Kilper, D. C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

Kim, D. H.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Kim, D. S.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Kim, E. K.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Kim, S. H.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Kim, W. S.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

King, G. B.

Klatt, G.

Kneisler, R. J.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Koch, S. W.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Kohler, K.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
[CrossRef]

Kray, S.

Kurz, H.

Laurendeau, N. M.

Le Gouët, J.-L.

Lill, E.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
[CrossRef]

Lorgeré, I.

Lytle, F. E.

Meier, T.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Mlayah, A.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Mori, T.

T. Mori and A. Otani, “A Simple Synchronization Method for Optical Sampling Eye Monitor,” Jpn. J. Appl. Phys.49, 070208 (2010).
[CrossRef]

Moustakides, G.

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Nagel, M.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett.35, 1395–1397 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Noirie, L.

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Otani, A.

T. Mori and A. Otani, “A Simple Synchronization Method for Optical Sampling Eye Monitor,” Jpn. J. Appl. Phys.49, 070208 (2010).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Peloso, P.

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Pieterse, J. W.

Raybon, G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

Raymer, M. G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

Saneyoshi, E.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
[CrossRef]

Schecker, O.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Scheer, E.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Schiller, S.

Schliesser, A.

Schneider, S.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
[CrossRef]

Sohn, J. Y.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Spoler, F.

Stuart, H. R.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

Sucha, G.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

Sunnerud, H.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Time-domain spectroscopy of molecular free-induction decay in the infrared,” Opt. Lett.35, 1395–1397 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

Takagi, Y.

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999).
[CrossRef]

Tchénio, P.

Thoma, A.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

van der Weide, D. W.

Waitz, R.

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Watts, M. L.

Westlund, M.

Williams, C.

Winnerl, S.

Woo, D. H.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Woo, J. C.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Yahng, J. S.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Yasui, T.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
[CrossRef]

Ye, X.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Yee, D. S.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Yee, K. J.

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Yokoyama, S.

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

Yu, A. C.

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys.

E. Lill, S. Schneider, and F. Dorr, “Rapid optical sampling of relaxation-phenomena employing 2 time-correlated picosecond pulsetrains,” Appl. Phys.14, 399–401 (1977).
[CrossRef]

Appl. Phys. Lett.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett.13, 178–180 (1968).
[CrossRef]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett.87, 061101 (2005).
[CrossRef]

T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88, 241104 (2006).
[CrossRef]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88, 041117 (2006).
[CrossRef]

Appl. Spectrosc.

IEEE J. Sel. Top. Quantum Electr.

G. Sucha, M. E. Fermann, D. J. Harter, and M. Hofer, “A new method for rapid temporal scanning of ultrafast lasers,” IEEE J. Sel. Top. Quantum Electr.2, 605–621 (1996).
[CrossRef]

IEEE Phot. Techn. Lett.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Phot. Techn. Lett.15, 1746–1748 (2003).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

T. Mori and A. Otani, “A Simple Synchronization Method for Optical Sampling Eye Monitor,” Jpn. J. Appl. Phys.49, 070208 (2010).
[CrossRef]

Nat. Photonics

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4, 55–57 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J. R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B79, 201307 (2009).
[CrossRef]

Phys. Rev. Lett.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902 (2008).
[CrossRef] [PubMed]

D. S. Kim, J. Y. Sohn, J. S. Yahng, Y. H. Ahn, K. J. Yee, D. S. Yee, Y. D. Jho, S. C. Hohng, D. H. Kim, W. S. Kim, J. C. Woo, T. Meier, S. W. Koch, D. H. Woo, E. K. Kim, and S. H. Kim, “Femtosecond four-wave mixing experiments on GaAs quantum wells using two independently tunable lasers,” Phys. Rev. Lett.80, 4803–4806 (1998).
[CrossRef]

Rev. Sci. Instr.

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instr.70, 2218–2224 (1999).
[CrossRef]

J. Bredenbeck, J. Helbing, and P. Hamm, “Continuous scanning from picoseconds to microseconds in time resolved linear and nonlinear spectroscopy,” Rev. Sci. Instr.75, 4462–4466 (2004).
[CrossRef]

A. C. Yu, X. Ye, D. Ionascu, W. X. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instr.76, 114301 (2005).
[CrossRef]

Other

L. Noirie, F. Cérou, G. Moustakides, O. Audouin, and P. Peloso, “New transparent optical monitoring of the eye and ber using asynchronous under-sampling of the signal,” Proc. Eur. Conf. Optical Communication, PD2.2 (2002).

Supplementary Material (1)

» Media 1: MPG (3585 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Principle of conventional ASOPS, which relies on two femtosecond oscillators with almost identical repetition rates, resulting in a slow linear increment of the pump-probe time delay. (b) In AD-ASOPS the delay varies much more rapidly with time but still takes well defined values that can be accurately determined as described in the text.

Fig. 2
Fig. 2

Experimental setup used to demonstrate AD-ASOPS. The insert shows the interference signal used for coincidence detection: the blue and red curves are examples of signals associated with two different carrier envelope phases; the green line is the envelope of all possible signals; the yellow area indicates the signals inducing coincidence detection.

Fig. 3
Fig. 3

Semi-logarithmic plot of the measured probability density function of coincidence events as a function of the time elapsed between two coincidences (blue dots). The data have been obtained by computing the histogram of coincidence events according to the times elapsed from the previous coincidence sorted in time bins of 100 μs. The data corresponding to an elapsed time greater than 500 μs have been fitted to an exponentially decaying function (red solid line), with a time constant of 802 μs.

Fig. 4
Fig. 4

Semi-logarithmic plot of the variance of the interferometric signal resulting from the averaging of 1.5 × 109 laser shots. The right insert shows a zoom of the main peak evidencing the time resolution (linear scale). The left insert shows a small feature observed 4 ns away from the main peak (linear scale).

Fig. 5
Fig. 5

Linear-scale plot of the variance signal in the same experimental conditions as Fig. 4 (black solid line) and after a delay resulting from free space propagation over a path of about 1.2 m (blue solid line). The insert shows a zoom around the zero time delay (black solid line) and around the delay of 3945 ps (blue circles).

Fig. 6
Fig. 6

Time response of the photodiode excited by pump pulses at frequency f1, acquired with the acquisition card clocked at the probe frequency f2 and sorted according to the pump-probe delay (blue line). The data are compared with a direct measurement performed with a clock triggered at the pump frequency f1 while the delay between excitation and acquisition is scanned by purely electronic means (red dots). The figure is the last frame of the associated movie ( Media 1) showing the acquisition of the AD-ASOPS data and associated histogram, with an exponentially-accelerating acquisition rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ t n = n ( T 2 T 1 )
Δ t n = n ( T 2 T 1 ) [ T 1 ] = n T 2 [ T 1 ]
Δ t n = { n N 1 N 2 } T 1

Metrics