Abstract

An analytical model of the response of a free-electron gas within the nanorod to the incident electromagnetic wave is developed to investigate the optical antenna problem. Examining longitudinal oscillations of the free-electron gas along the antenna nanorod a simple formula for antenna resonance wavelengths proving a linear scaling is derived. Then the nanorod polarizability and scattered fields are evaluated. Particularly, the near-field amplitudes are expressed in a closed analytical form and the shift between near-field and far-field intensity peaks is deduced.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
    [CrossRef]
  2. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
    [CrossRef] [PubMed]
  3. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
    [CrossRef]
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
    [CrossRef]
  5. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16, 16529–16537 (2008).
    [CrossRef] [PubMed]
  6. J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
    [CrossRef] [PubMed]
  7. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt.8, S87–S93 (2006).
    [CrossRef]
  8. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
    [CrossRef] [PubMed]
  9. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  10. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Elsevier, Butterworth-Heinemann, 2010).
  11. F. D. T. D. Solutions (version 7.5.5), from Lumerical Solutions, Inc., http://www.lumerical.com .
  12. J. D. Jackson, Classical Electrodynamics (J. Wiley & Sons, 1999).
  13. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon system,” Nano Lett.11, 1280–1283 (2011).
    [CrossRef] [PubMed]
  14. C. Kittel, Introduction to Solid State Physics, 8th ed. (J. Wiley & Sons, 2005).

2012 (2)

N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
[CrossRef]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
[CrossRef] [PubMed]

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon system,” Nano Lett.11, 1280–1283 (2011).
[CrossRef] [PubMed]

2010 (1)

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16, 16529–16537 (2008).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

2006 (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt.8, S87–S93 (2006).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
[CrossRef] [PubMed]

Barnard, E. S.

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt.8, S87–S93 (2006).
[CrossRef]

Berkovich, N.

N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
[CrossRef]

Bharadwaj, P.

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
[CrossRef] [PubMed]

Chandran, A.

Deutsch, B.

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
[CrossRef] [PubMed]

Ginsburg, P.

N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
[CrossRef]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
[CrossRef] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (J. Wiley & Sons, 1999).

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 8th ed. (J. Wiley & Sons, 2005).

Landau, L. D.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Elsevier, Butterworth-Heinemann, 2010).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Elsevier, Butterworth-Heinemann, 2010).

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon system,” Nano Lett.11, 1280–1283 (2011).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Orenstein, M.

N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
[CrossRef]

Rockstuhl, E. C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

White, J. S.

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon system,” Nano Lett.11, 1280–1283 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

J. Opt. A: Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt.8, S87–S93 (2006).
[CrossRef]

J. Phys.: Condens. Matter (1)

N. Berkovich, P. Ginsburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys.: Condens. Matter24, 073202 (2012).
[CrossRef]

Nano Lett. (3)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon system,” Nano Lett.11, 1280–1283 (2011).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, E. C. Rockstuhl, and K. Kern, “Plasmonic nanowire antennas: Experiment, simulation, and theory,” Nano Lett.10, 3596–3603 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
[CrossRef] [PubMed]

Other (4)

C. Kittel, Introduction to Solid State Physics, 8th ed. (J. Wiley & Sons, 2005).

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Elsevier, Butterworth-Heinemann, 2010).

F. D. T. D. Solutions (version 7.5.5), from Lumerical Solutions, Inc., http://www.lumerical.com .

J. D. Jackson, Classical Electrodynamics (J. Wiley & Sons, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics