Abstract

A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
    [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
    [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  5. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003).
    [CrossRef]
  6. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett.24(18), 1311–1313 (1999).
    [CrossRef] [PubMed]
  7. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26(1), 42–43 (2001).
    [CrossRef] [PubMed]
  8. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19(13), 11992–11999 (2011).
    [CrossRef] [PubMed]
  9. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Type II femtosecond laser writing of Bragg grating waveguides in bulk glass,” Electron. Lett.42(21), 1223–1224 (2006).
    [CrossRef]
  10. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
    [CrossRef] [PubMed]
  11. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
    [CrossRef]
  12. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
    [CrossRef] [PubMed]
  13. K. Minoshima, A. Kowalevicz, E. Ippen, and J. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express10(15), 645–652 (2002).
    [PubMed]
  14. G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett.31(6), 739–741 (2006).
    [CrossRef] [PubMed]
  15. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17(15), 12546–12554 (2009).
    [CrossRef] [PubMed]
  16. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol.22(3), 895–902 (2004).
    [CrossRef]
  17. S. M. Eaton, Contrasts in Thermal Diffusion and Heat Accumulation Effects in the Fabrication of Waveguides in Glasses using Variable Repetition Rate Femtosecond Laser (University of Toronto, 2008).
  18. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
    [CrossRef]
  19. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
    [CrossRef]
  20. Y. Zhang, W. Huang, X. Wang, H. Xu, and Z. Cai, “Design of flat-top interleaver and tunable dispersion compensator using cascaded Sagnac loop mirrors and ring resonators,” Appl. Opt.48(32), 6213–6222 (2009).
    [CrossRef] [PubMed]
  21. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express15(10), 6439–6457 (2007).
    [CrossRef] [PubMed]
  22. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Design of 100/300 GHz optical interleaver with IIR architectures,” Opt. Express13(7), 2643–2652 (2005).
    [CrossRef] [PubMed]
  23. J. Ng, C. Li, P. Herman, and L. Qian, “Flap-Top Interleaver by Femtosecond Laser Writing of Cascaded Mach-Zehnder Interferometers in Fused Silica,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI71.
  24. W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16(15), 11470–11480 (2008).
    [CrossRef] [PubMed]
  25. S. M. Eaton, W.-J. Chen, H. Zhang, R. Iyer, J. Li, M. L. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol.27(9), 1079–1085 (2009).
    [CrossRef]
  26. H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, “Three-dimensional optical sensing network written in fused silica glass with femtosecond laser,” Opt. Express16(18), 14015–14023 (2008).
    [CrossRef] [PubMed]
  27. Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003).
    [CrossRef]
  28. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15(4), 671–679 (1997).
    [CrossRef]
  29. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am.66(3), 216–220 (1976).
    [CrossRef]
  30. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
    [CrossRef]
  31. F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, 1996).

2011 (3)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19(13), 11992–11999 (2011).
[CrossRef] [PubMed]

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

2009 (4)

2008 (3)

2007 (2)

L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express15(10), 6439–6457 (2007).
[CrossRef] [PubMed]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

2006 (2)

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Type II femtosecond laser writing of Bragg grating waveguides in bulk glass,” Electron. Lett.42(21), 1223–1224 (2006).
[CrossRef]

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett.31(6), 739–741 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

2003 (3)

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

1999 (1)

1997 (1)

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15(4), 671–679 (1997).
[CrossRef]

1996 (1)

1995 (1)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

1976 (1)

Aitchison, J. S.

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Ams, M.

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Bado, P.

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett.31(6), 739–741 (2006).
[CrossRef] [PubMed]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Borrelli, N. F.

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Cai, Z.

Cerullo, G.

Chen, W. J.

Chen, W.-J.

Chiodo, N.

Christodoulides, D. N.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Davis, K. M.

Dekker, P.

Della Valle, G.

Dreisow, F.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Dugan, M.

Eaton, S. M.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15(4), 671–679 (1997).
[CrossRef]

Fernandes, L. A.

Florea, C.

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21(1), 246–253 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Fujimoto, J.

Gaeta, A. L.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Grenier, J. R.

He, S.

Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003).
[CrossRef]

Heinrich, M.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Herman, P. R.

Hibino, Y.

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Ho, S.

Homoelle, D.

Huang, W.

Inoue, Y.

Ippen, E.

Iyer, R.

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Keil, R.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Killi, A.

Kitoh, T.

Kohtoku, M.

Kopf, D.

Kowalevicz, A.

Laporta, P.

Lederer, M.

Li, G.

Li, J.

Lit, J. W. Y.

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Marcuse, D.

Marques, P. V. S.

Marshall, G. D.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15(4), 671–679 (1997).
[CrossRef]

Matthews, J. C. F.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Minoshima, K.

Miura, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mizuno, T.

Morgner, U.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

S. M. Eaton, W.-J. Chen, H. Zhang, R. Iyer, J. Li, M. L. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol.27(9), 1079–1085 (2009).
[CrossRef]

Nolte, S.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

O’Brien, J. L.

Oguma, M.

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
[CrossRef] [PubMed]

Pertsch, T.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Politi, A.

Said, A. A.

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett.31(6), 739–741 (2006).
[CrossRef] [PubMed]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Shibata, T.

Shimotsuma, Y.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

Smith, C.

Soh, Y. C.

Streltsov, A. M.

Sugimoto, N.

Svelto, O.

Szameit, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Taccheo, S.

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Tünnermann, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Wang, Q.

Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003).
[CrossRef]

Wang, Q. J.

Wang, X.

Wei, L.

Wielandy, S.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Winick, K. A.

Withford, M. J.

Xu, H.

Yang, W.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Zhang, H.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003).
[CrossRef]

Electron. Lett. (2)

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Type II femtosecond laser writing of Bragg grating waveguides in bulk glass,” Electron. Lett.42(21), 1223–1224 (2006).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett.7(4), 388–390 (1995).
[CrossRef]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

Q. Wang and S. He, “Optimal design of a flat-top interleaver based on cascaded MZ interferometers by using a genetic algorithm,” Opt. Commun.224(4-6), 229–236 (2003).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Sci Rep (1)

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci Rep1, 94 (2011).
[CrossRef] [PubMed]

Other (3)

S. M. Eaton, Contrasts in Thermal Diffusion and Heat Accumulation Effects in the Fabrication of Waveguides in Glasses using Variable Repetition Rate Femtosecond Laser (University of Toronto, 2008).

J. Ng, C. Li, P. Herman, and L. Qian, “Flap-Top Interleaver by Femtosecond Laser Writing of Cascaded Mach-Zehnder Interferometers in Fused Silica,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI71.

F. Landouceur and J. D. Love, Silica-Based Buried Channel Waveguides and Devices (Chapman & Hall, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic design for the four-port FTI composed of two cascaded MZIs with input and output ports labelled as 1 and 2, and 3 and 4, respectively, together with a magnified (inset) view of a single DC with coupling distance, d = 8 µm. The optimized FTI design requires coupling lengths of L c = 0.955, 0.000, and 0.236 mm (left to right for the 3 DCs) and the indicated path length differences, ΔL .

Fig. 2
Fig. 2

Propagation losses measured for straight and curved (R = 35 and 75 mm) waveguides and the optimized FTI. Propagation losses for curved waveguides, including the FTI, increase exponentially with larger wavelength. The purple highlighted band at ~1375 nm indicate losses due to OH defects [26].

Fig. 3
Fig. 3

The measured coupling ratio, r 3 and r 4 , at 1310 nm for DCs of various coupling lengths and the representation of Eq. (4) (solid lines) with DC matrix parameters:
 κ = 1.398 mm−1,φ = 1.021, andA = 0.944 and a coefficient of determination, R 2 = 0.99956.

Fig. 4
Fig. 4

Spectral response of a single DC with coupling length, L c = 0.955 mm, yielding a nearly flat 3.0 ± 0.5 dB coupling ratio over a 30-nm bandwidth between 1296 and 1326 nm.

Fig. 5
Fig. 5

The measured (Exp) and simulated (Model) transmission spectra for the FTI showing good agreement between the design and the device spectra. A 15-dB contrast ratio is observed over a 30-nm spectral band of 1287 to 1317 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( E 3 E 4 )= M FTI ( E 1 E 2 )
M FTI = M DC 3 ( M Δ θ p 2 M α 2 ) MZI 2 M DC 2 ( M Δ θ p 1 M α 1 ) MZI 1 M DC 1 ,
r j ( λ )= P j P 3 + P 4 = E j 2 E 3 2 + E 4 2 ,j=3,4.
r j ( λ )=A sin 2 [ θ DC ( L C ,λ ) ],j=3,4, where θ DC ( L C ,λ )=κ( λ ) L c +ϕ( λ ).
M DC =( cos θ DC isin θ DC isin θ DC cos θ DC )
M Δ θ p =( exp( iΔ θ p 2 ) 0 0 exp( iΔ θ p 2 ) ),where Δ θ p = 2πn eff ( λ )ΔL λ ,and
M α =( 10 1 10 [ α s ( λ ) L s 1 + α c ( R,λ ) L c 1 ] 0 0 10 1 10 [ α s ( λ ) L s2 + α c ( R,λ ) L c2 ] )

Metrics