Abstract

We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
    [CrossRef]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
    [CrossRef]
  4. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005).
    [CrossRef] [PubMed]
  5. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).
    [CrossRef] [PubMed]
  6. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008).
    [CrossRef] [PubMed]
  7. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(21), 2449–2451 (2008).
    [CrossRef] [PubMed]
  8. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008).
    [CrossRef] [PubMed]
  9. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008).
    [CrossRef] [PubMed]
  10. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008).
    [CrossRef] [PubMed]
  11. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009).
    [CrossRef] [PubMed]
  12. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 μm,” Opt. Express17(22), 20109–20116 (2009).
    [CrossRef] [PubMed]
  13. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34(22), 3526–3528 (2009).
    [CrossRef] [PubMed]
  14. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
    [CrossRef]
  15. D. V. Khudyakov, A. S. Lobach, and V. A. Nadtochenko, “Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm,” Opt. Lett.35(16), 2675–2677 (2010).
    [CrossRef] [PubMed]
  16. S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011).
    [CrossRef]
  17. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36(20), 3996–3998 (2011).
    [CrossRef] [PubMed]
  18. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
    [CrossRef] [PubMed]
  19. J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express18(4), 3592–3600 (2010).
    [CrossRef] [PubMed]
  20. J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin, C. K. Lee, J. J. Lin, and W. H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
    [CrossRef] [PubMed]
  21. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett.35(8), 1296–1298 (2010).
    [CrossRef] [PubMed]
  22. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002).
    [PubMed]
  23. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32(16), 2372–2374 (2007).
    [CrossRef] [PubMed]
  24. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006).
    [CrossRef] [PubMed]
  25. A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express14(10), 4368–4373 (2006).
    [CrossRef] [PubMed]
  26. S. Kivistö, R. Herda, and O. G. Okhotnikov, “All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating,” Opt. Express16(1), 265–270 (2008).
    [CrossRef] [PubMed]
  27. R. Gumenyuk, I. Vartiainen, H. Tuovinen, S. Kivistö, Y. Chamorovskiy, and O. G. Okhotnikov, “Dispersion compensation technologies for femtosecond fiber system,” Appl. Opt.50(6), 797–801 (2011).
    [CrossRef] [PubMed]
  28. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
    [CrossRef]
  29. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B25(10), 1763–1770 (2008).
    [CrossRef]
  30. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011).
    [CrossRef] [PubMed]
  31. B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. (Paris)197, 1593 (1933).
  32. S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).
  33. S. Webb, S. Desbruslais, R. Oberland, and J. Ellison, “Optical filter,” U. S. patent 2009/0028555 A1 (27 July 2007).
  34. D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
    [CrossRef]
  35. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high power fiber lasers and amplifiers,” U. S. patent 6,826,335 (30 November 2004).

2011 (5)

2010 (3)

2009 (4)

2008 (10)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
[CrossRef]

S. Kivistö, R. Herda, and O. G. Okhotnikov, “All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating,” Opt. Express16(1), 265–270 (2008).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
[CrossRef]

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008).
[CrossRef] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008).
[CrossRef] [PubMed]

A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008).
[CrossRef] [PubMed]

A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B25(10), 1763–1770 (2008).
[CrossRef]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(21), 2449–2451 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (1)

2004 (1)

2002 (2)

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002).
[PubMed]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

1992 (1)

S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).

1933 (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. (Paris)197, 1593 (1933).

Aitchison, B.

Alvarez, W. E.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
[CrossRef]

Bale, B. G.

Balzano, L.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

Borgna, A.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Brown, D. P.

Castellani, C. E. S.

Chamorovskiy, Y.

Chang, C. M.

Chen, X. Z.

Cheng, W. H.

Chernov, A. I.

Chiu, J. C.

Cho, W. B.

Choi, S. Y.

Chong, A.

Dantus, M.

Dianov, E. M.

Digiovanni, D. J.

Fedotov, Y. S.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011).
[CrossRef]

Ferrari, A. C.

Flahaut, E.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
[CrossRef]

Galzerano, G.

Gambetta, A.

Ghalmi, S.

Griebner, U.

Gumenyuk, R.

Hakulinen, T.

Härkönen, A.

Hasan, T.

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36(20), 3996–3998 (2011).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Herda, R.

Herrera, J. E.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Hsieh, B. Z.

Ilday, F.

Ilday, F. Ö.

Ippen, E. P.

Ishigure, T.

Isomäki, A.

Itoga, E.

Itoh, K.

Jablonski, M.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Kaskela, A.

Kataura, H.

Kauppinen, E. I.

Kazaoui, S.

Kelleher, E. J. R.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Khudyakov, D. V.

Kitiyanan, B.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Kivistö, S.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011).
[CrossRef]

S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).

Konov, V. I.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Kracht, D.

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011).
[CrossRef]

Kutz, J. N.

Lan, Y. F.

Laporta, P.

Lee, C. K.

Lee, S.

Lim, H.

Lin, G. R.

Lin, J. J.

Lin, S. C.

Lobach, A. S.

Lyot, B.

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. (Paris)197, 1593 (1933).

Marangoni, M.

Martinez, A.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Minami, N.

Minoshima, K.

Miyashita, K.

Nadtochenko, V. A.

Nasibulin, A. G.

Nicholson, J. W.

Nie, B.

Nishizawa, N.

Obraztsova, E. D.

Okhotnikov, O. G.

Özgören, K.

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
[CrossRef]

Pestov, D.

Petrov, V.

Pompeo, F.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Popa, D.

Popov, S. V.

Prochnow, O.

Ramachandran, S.

Ramponi, R.

Renninger, W. H.

Resasco, D. E.

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

Rivier, S.

Rotermund, F.

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008).
[CrossRef] [PubMed]

Ruehl, A.

Rusu, M.

Rytz, D.

Sakakibara, Y.

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Schibli, T.

Schmidt, A.

Schultz, M.

Seno, Y.

Set, S. Y.

Solodyankin, M. A.

Song, Y. W.

Steinmeyer, G.

Sumimura, K.

Sun, Z.

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36(20), 3996–3998 (2011).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34(22), 3526–3528 (2009).
[CrossRef] [PubMed]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Sventsitskay, N. A.

S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

Tanaka, Y.

Tausenev, A. V.

Taylor, J. R.

Tokumoto, M.

Travers, J. C.

Tuovinen, H.

Uchida, S.

Vartiainen, I.

Wandt, D.

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Windeler, R. S.

Wise, F.

Wise, F. W.

Yaguchi, H.

Yamashita, S.

Yeh, C. Y.

Yim, J. H.

Adv. Mater. (Deerfield Beach Fla.) (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009).
[CrossRef]

Appl. Opt. (1)

C. R. Acad. Sci. (Paris) (1)

B. Lyot, “Optical apparatus with wide field using interference of polarized light,” C. R. Acad. Sci. (Paris)197, 1593 (1933).

IEEE J. Sel. Top. Quant. Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quant. Electron.2(3), 435–453 (1996).

J. Lightwave Technol. (1)

J. Nanopart. Res. (1)

D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan, and A. Borgna, “A scalable process for production of single-walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” J. Nanopart. Res.4(1/2), 131–136 (2002), http://www.springerlink.com/content/t642w241ll741366/ .
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

S. M. Kobtsev, S. V. Kukarin, and Y. S. Fedotov, “Mode-locked Yb fiber laser with saturable absorber based on carbon nanotubes,” Laser Phys.21(2), 283–286 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008), http://www.nature.com/nphoton/journal/v2/n6/full/nphoton.2008.94.html .
[CrossRef]

Opt. Express (13)

T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005).
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express14(10), 4368–4373 (2006).
[CrossRef] [PubMed]

J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007).
[CrossRef] [PubMed]

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002).
[PubMed]

S. Kivistö, R. Herda, and O. G. Okhotnikov, “All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating,” Opt. Express16(1), 265–270 (2008).
[CrossRef] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009).
[CrossRef] [PubMed]

A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 μm,” Opt. Express17(22), 20109–20116 (2009).
[CrossRef] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express16(13), 9429–9435 (2008).
[CrossRef] [PubMed]

A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008).
[CrossRef] [PubMed]

A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs pump-probe spectroscopy of Single Wall Carbon Nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008).
[CrossRef] [PubMed]

J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin, C. K. Lee, J. J. Lin, and W. H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
[CrossRef] [PubMed]

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011).
[CrossRef] [PubMed]

J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express18(4), 3592–3600 (2010).
[CrossRef] [PubMed]

Opt. Lett. (8)

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett.35(8), 1296–1298 (2010).
[CrossRef] [PubMed]

D. V. Khudyakov, A. S. Lobach, and V. A. Nadtochenko, “Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm,” Opt. Lett.35(16), 2675–2677 (2010).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36(20), 3996–3998 (2011).
[CrossRef] [PubMed]

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33(12), 1336–1338 (2008).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34(22), 3526–3528 (2009).
[CrossRef] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(21), 2449–2451 (2008).
[CrossRef] [PubMed]

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett.32(16), 2372–2374 (2007).
[CrossRef] [PubMed]

M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006).
[CrossRef] [PubMed]

Opt. Spectrosc. (1)

S. M. Kobtsev and N. A. Sventsitskay, “Application of birefringent filters in continuous-wave tunable lasers: a review,” Opt. Spectrosc.73(1), 114–123 (1992).

Other (2)

S. Webb, S. Desbruslais, R. Oberland, and J. Ellison, “Optical filter,” U. S. patent 2009/0028555 A1 (27 July 2007).

A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high power fiber lasers and amplifiers,” U. S. patent 6,826,335 (30 November 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Calculated transmission spectra of fiber-based Lyot filter with different splice angle of PM fibers. for T1, L = 1 m, θ = 45°; T2: L = 0,5 m, θ = 30° and T3: L = 2 m, θ = 70°. Note: Δn = 4.4 × 10−4 is used for calculation.

Fig. 2
Fig. 2

Diagram of the all-fiber mode-locked Yb laser. Cross marks indicate fiber splices.

Fig. 3
Fig. 3

Absorption spectrum of SWCNT sample

Fig. 4
Fig. 4

(a) Laser output spectrum without PM fiber in the cavity. (b) Pulse train output from the laser in the configuration without PM fiber showing the repetition rate of 77 MHz with a pulse interval at ~13 ns.

Fig. 5
Fig. 5

Output spectra of the Yb laser mode locked at different settings of the PC showing different FWHM with 1 m PM fiber in the laser cavity.

Fig. 7
Fig. 7

Output spectra of the Yb laser mode locked at different settings of PC showing different FWHM with 2 m PM fiber in the laser cavity.

Fig. 6
Fig. 6

Output spectra of the Yb laser mode locked at different settings of the PC showing different FWHM with 1.5 m PM fiber in the laser cavity.

Fig. 8
Fig. 8

Resonator with a 2-m PM fiber: experimental and theoretical (red and blue envelopes) pulse auto-correlation functions (a) and laser output spectrum (b).

Fig. 10
Fig. 10

Resonator with a 1-m PM fiber: experimental and theoretical (red and blue envelopes) pulse auto-correlation functions (a) and laser output spectrum (b).

Fig. 9
Fig. 9

Resonator with a 1.5-m PM fiber: experimental and theoretical (red and blue envelopes) pulse auto-correlation functions (a) and laser output spectrum (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= cos 2 ( πdΔn λ )
T= cos 2 ( πLΔn λ )
T=1 sin 2 (2θ) sin 2 ( πLΔn λ )

Metrics