B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).

[CrossRef]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

M. Culbertson and D. Burden, “A distributed algorithm for multi-tau autocorrelation,” Rev. Sci. Instrum.78, 044102 (2007).

[CrossRef]
[PubMed]

J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011).

[CrossRef]
[PubMed]

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).

[CrossRef]

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

M. Culbertson and D. Burden, “A distributed algorithm for multi-tau autocorrelation,” Rev. Sci. Instrum.78, 044102 (2007).

[CrossRef]
[PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers13, 1–27 (1974).

[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers13, 29–61 (1974).

[CrossRef]
[PubMed]

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.

B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009).

[CrossRef]
[PubMed]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007).

[CrossRef]
[PubMed]

Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999).

[CrossRef]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83, 2300–2317 (2002).

[CrossRef]
[PubMed]

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009).

[CrossRef]
[PubMed]

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.

C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.

B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.

J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011).

[CrossRef]
[PubMed]

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.

C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011).

[CrossRef]
[PubMed]

Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999).

[CrossRef]

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009).

[CrossRef]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).

[CrossRef]

T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009).

[CrossRef]

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009).

[CrossRef]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.

W. Liu, J. Shen, and X. Sun, “Design of multiple-tau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers13, 29–61 (1974).

[CrossRef]
[PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers13, 1–27 (1974).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.

B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J.96, 5050–5059 (2009).

[CrossRef]
[PubMed]

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011).

[CrossRef]

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J.96, 5050–5059 (2009).

[CrossRef]
[PubMed]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).

[CrossRef]

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.

C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.

B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999).

[CrossRef]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009).

[CrossRef]
[PubMed]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011).

[CrossRef]

J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010).

[CrossRef]
[PubMed]

T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010).

[CrossRef]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt.2, 287–305 (1990).

[CrossRef]

K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser.77, 175–184 (1985).

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999).

[CrossRef]

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.

C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).

[CrossRef]

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

W. Liu, J. Shen, and X. Sun, “Design of multiple-tau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.

Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.

T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010).

[CrossRef]

J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010).

[CrossRef]
[PubMed]

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011).

[CrossRef]

T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010).

[CrossRef]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

W. Liu, J. Shen, and X. Sun, “Design of multiple-tau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007).

[CrossRef]
[PubMed]

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011).

[CrossRef]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011).

[CrossRef]
[PubMed]

F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. Kang-Bin, and M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express18, 23818–23828 (2010).

[CrossRef]
[PubMed]

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009).

[CrossRef]
[PubMed]

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83, 2300–2317 (2002).

[CrossRef]
[PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers13, 1–27 (1974).

[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers13, 29–61 (1974).

[CrossRef]
[PubMed]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009).

[CrossRef]

T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010).

[CrossRef]

J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010).

[CrossRef]
[PubMed]

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J.96, 5050–5059 (2009).

[CrossRef]
[PubMed]

Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007).

[CrossRef]
[PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010).

[CrossRef]

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J.96, 5050–5059 (2009).

[CrossRef]
[PubMed]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J.83, 2300–2317 (2002).

[CrossRef]
[PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy i: conceptual basis and theory,” Biopolymers13, 1–27 (1974).

[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. ii. an experimental realization,” Biopolymers13, 29–61 (1974).

[CrossRef]
[PubMed]

G. Heuvelman, F. Erdel, M. Wachsmuth, and K. Rippe, “Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy,” Eur. Biophys. J.38, 813–828 (2009).

[CrossRef]
[PubMed]

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels,” in “ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999,”, vol. 5 (IEEE, 1999), vol. 5, pp. 160–163.

B. Hoppe, H. Meuth, M. Engels, and R. Peters, “Design of digital correlation systems for low-intensity precision photon spectroscopic measurements,” in “IEEE Proceedings Circuits, Devices and Systems,”, vol. 148 (IET, 2001), vol. 148, pp. 267–271.

K. Schätzel, “New concepts in correlator design,” Inst. Phys. Conf. Ser.77, 175–184 (1985).

M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2 × 2 CMOS detector array,” J. Biomed. Opt.9, 913 (2004).

[CrossRef]
[PubMed]

J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011).

[CrossRef]
[PubMed]

B. Tieman, S. Narayanan, A. Sandy, and M. Sikorski, “Mpicorrelator: a parallel code for performing time correlations,” Nucl. Inst. Meth. A649, 240–242 (2011).

[CrossRef]

E. Schaub, “F2cor: fast 2-stage correlation algorithm for FCS and DLS,” Opt. Express20, 2184–2195 (2012).

[CrossRef]
[PubMed]

M. Wahl, I. Gregor, M. Patting, and J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting,” Opt. Express11, 3583–3591 (2003).

[CrossRef]
[PubMed]

T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express10, 10627–10641 (2010).

[CrossRef]

F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, I. Kang-Bin, and M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express18, 23818–23828 (2010).

[CrossRef]
[PubMed]

M. Burkhardt and P. Schwille, “Electron multiplying ccd based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express14, 5013–5020 (2006).

[CrossRef]
[PubMed]

J. Sankaran, X. Shi, L. Ho, E. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010).

[CrossRef]
[PubMed]

T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, “Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by brownian dynamics,” Phys. Chem. Chem. Phys.11, 10671–10681 (2009).

[CrossRef]

R. Colyer, G. Scalia, F. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” 7905, 790503–1 (2011).

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35-μm CMOS and based on an event-driven readout for TCSPC experiments,” in “Proc. SPIE,” 6372, 63720S (2006).

[CrossRef]

K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt.2, 287–305 (1990).

[CrossRef]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65, 251–297 (2002).

[CrossRef]

D. Magatti and F. Ferri, “25 ns software correlator for photon and fluorescence correlation spectroscopy,” Rev. Sci. Instrum.74, 1135–1144 (2003).

[CrossRef]

M. Culbertson and D. Burden, “A distributed algorithm for multi-tau autocorrelation,” Rev. Sci. Instrum.78, 044102 (2007).

[CrossRef]
[PubMed]

G. Mocsar, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vamosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012).

[CrossRef]
[PubMed]

Z. Kojro, A. Riede, M. Schubert, and W. Grill, “Systematic and statistical errors in correlation estimators obtained from various digital correlators,” Rev. Sci. Instrum.70, 4487–4496 (1999).

[CrossRef]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007).

[CrossRef]
[PubMed]

Joachim Wuttke: lmfit - a C/C++ routine for Levenberg-Marquardt minimization with wrapper for least-squares curve fitting, based on work by B. S. Garbow, K. E. Hillstrom, J. J. Moré, and S. Moshier. Version 3.2, retrieved on 2011-08-31 from http://www.messen-und-deuten.de/lmfit/ .

QuickFit 3.0 can be downloaded free of charge from http://www.dkfz.de/Macromol/quickfit/ . In addition to the fitting capabilities, it also contains software implementations of the correlators described in here.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2008), pp. 44–594.

The diffusion coefficient was D = 20μm2/s (corresponding to an intermediately sized protein in water), the simulation timestep of the random walk, as well as the minimum lag time were Δtsim = τmin = 1μs. There were around 1.2 particles in the effective measurement volume Veff ≈ 0.4μm3 on average.

R. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” in “Proceedings-Society of Photo-Optical Instrumentation Engineers,”, vol. 7571 (NIH Public Access, 2010), vol. 7571, p. 75710G.

C. Veerappan, J. A. Richardson, R. J. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter.” in “ISSCC, IEEE International Solid-State Circuits Conference,” (IEEE, 2011), pp. 312–314.

L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiationtolerant CMOS image sensor for space applications,” in “ISSCC, IEEE International Solid-State Circuits Conference,” (2009), pp. 40–41.

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “Irish Signals and Systems Conference, 2006. IET,” (IET, 2006), pp. 99–103.

C. Jakob, A. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007. DSD 2007,” (IEEE, 2007).

C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “A multichannel digital real-time correlator as single FPGA implementation,” in “15th International Conference on Digital Signal Processing, 2007,” (2007), pp. 276–279.

Y. Yang, J. Shen, W. Liu, and Y. Cheng, “Digital real-time correlator implemented by field programmable gate array,” in “CISP’08. Congress on Image and Signal Processing, 2008,”, vol. 1 (IEEE, 2008), vol. 1, pp. 149–151.

W. Liu, J. Shen, and X. Sun, “Design of multiple-tau photon correlation system implemented by FPGA,” in “ICESS’08. International Conference on Embedded Software and Systems, 2008,” (IEEE, 2008), pp. 410–414.

M. Engels, B. Hoppe, H. Meuth, and R. Peters, “Fast digital photon correlation system with high dynamic range,” in “Proceedings of the 13th Annual IEEE International ASIC/SOC Conference, 2000,” (IEEE, 2000), pp. 18–22.