Abstract

Nowadays, there is a hot debate among industry and academic researchers that whether the newly developed scientific-grade Complementary Metal Oxide Semiconductor (sCMOS) cameras could become the image sensors of choice in localization-based super-resolution microscopy. To help researchers find answers to this question, here we reported an experimental methodology for quantitatively comparing the performance of low-light cameras in single molecule detection (characterized via image SNR) and localization (via localization accuracy). We found that a newly launched sCMOS camera can present superior imaging performance than a popular Electron Multiplying Charge Coupled Device (EMCCD) camera in a signal range (15-12000 photon/pixel) more than enough for typical localization-based super-resolution microscopy.

© 2012 OSA

PDF Article
OSA Recommended Articles
Localization-based super-resolution microscopy with an sCMOS camera

Zhen-Li Huang, Hongyu Zhu, Fan Long, Hongqiang Ma, Lingsong Qin, Yongfeng Liu, Jiuping Ding, Zhihong Zhang, Qingming Luo, and Shaoqun Zeng
Opt. Express 19(20) 19156-19168 (2011)

A divide and conquer strategy for the maximum likelihood localization of low intensity objects

Alexander Krull, André Steinborn, Vaishnavi Ananthanarayanan, Damien Ramunno-Johnson, Uwe Petersohn, and Iva M. Tolić-Nørrelykke
Opt. Express 22(1) 210-228 (2014)

Algorithmic corrections for localization microscopy with sCMOS cameras - characterisation of a computationally efficient localization approach

Ruisheng Lin, Alexander H. Clowsley, Isuru D. Jayasinghe, David Baddeley, and Christian Soeller
Opt. Express 25(10) 11701-11716 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
    [Crossref] [PubMed]
  2. T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
    [Crossref] [PubMed]
  3. H. Shroff, H. White, and E. Betzig, “Photoactivated localization microscopy (PALM) of adhesion complexes,” Curr. Protoc. Cell Biol. Chapter 4, Unit 4.21 (2008).
  4. P. Seitz and A. J. P. Theuwissen, Single-photon imaging (Springer, Heidelberg, N. Y., 2011).
  5. B. Moomaw, “Camera technologies for low light imaging: overview and relative advantages,” Methods Cell Biol. 81, 251–283 (2007).
    [Crossref] [PubMed]
  6. J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science 334(6056), 618–623 (2011).
    [Crossref] [PubMed]
  7. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
    [Crossref]
  8. B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
    [Crossref]
  9. J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra 45, 46–50 (2011).
  10. G. Holst, “Scientific CMOS image sensors,” Laser Photon. 5, 18–21 (2009).
  11. http://sales.hamamatsu.com/assets/pdf/hpspdf/Flash4-ChangingTheGame.pdf , accessed May 2012.
  12. http://www.scmos.com/files/high/scmos_white_paper_8mb.pdf , accessed May 2012.
  13. Z. L. Huang, H. Y. Zhu, F. Long, H. Q. Ma, L. S. Qin, Y. F. Liu, J. P. Ding, Z. H. Zhang, Q. M. Luo, and S. Q. Zeng, “Localization-based super-resolution microscopy with an sCMOS camera,” Opt. Express 19(20), 19156–19168 (2011).
    [Crossref] [PubMed]
  14. S. Saurabh, S. Maji, and M. P. Bruchez, “Evaluation of sCMOS cameras for detection and localization of single Cy5 molecules,” Opt. Express 20(7), 7338–7349 (2012).
    [Crossref] [PubMed]
  15. J. R. Janesick, Photon transfer: DN [lambda] (SPIE, Bellingham, Wash., 2007).
  16. A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
    [Crossref]
  17. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  18. T. W. Quan, S. Q. Zeng, and Z. L. Huang, “Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging,” J. Biomed. Opt. 15(6), 066005 (2010).
    [Crossref] [PubMed]
  19. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
    [Crossref] [PubMed]
  20. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [Crossref] [PubMed]
  21. M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
    [Crossref] [PubMed]
  22. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
    [Crossref] [PubMed]
  23. T. W. Quan, P. C. Li, F. Long, S. Q. Zeng, Q. M. Luo, P. N. Hedde, G. U. Nienhaus, and Z. L. Huang, “Ultra-fast, high-precision image analysis for localization-based super resolution microscopy,” Opt. Express 18(11), 11867–11876 (2010).
    [Crossref] [PubMed]
  24. http://www.andor.com/pdfs/spec_sheets/L897SS.pdf , accessed May 2012.
  25. http://www.photometrics.com/products/datasheets/HQ2.pdf , accessed May 2012.
  26. http://sales.hamamatsu.com/assets/pdf/hpspdf/e_orcaFlashE01.pdf , accessed May 2012.
  27. http://sales.hamamatsu.com/assets/pdf/hpspdf/e_flash4.pdf , accessed May 2012.
  28. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
    [Crossref] [PubMed]
  29. M. C. DeSantis, S. H. DeCenzo, J. L. Li, and Y. M. Wang, “Precision analysis for standard deviation measurements of immobile single fluorescent molecule images,” Opt. Express 18(7), 6563–6576 (2010).
    [Crossref] [PubMed]
  30. M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
    [Crossref] [PubMed]
  31. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
    [Crossref] [PubMed]
  32. M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).
  33. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003).
    [Crossref]

2012 (1)

2011 (5)

Z. L. Huang, H. Y. Zhu, F. Long, H. Q. Ma, L. S. Qin, Y. F. Liu, J. P. Ding, Z. H. Zhang, Q. M. Luo, and S. Q. Zeng, “Localization-based super-resolution microscopy with an sCMOS camera,” Opt. Express 19(20), 19156–19168 (2011).
[Crossref] [PubMed]

J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science 334(6056), 618–623 (2011).
[Crossref] [PubMed]

J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra 45, 46–50 (2011).

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

2010 (7)

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

M. C. DeSantis, S. H. DeCenzo, J. L. Li, and Y. M. Wang, “Precision analysis for standard deviation measurements of immobile single fluorescent molecule images,” Opt. Express 18(7), 6563–6576 (2010).
[Crossref] [PubMed]

T. W. Quan, P. C. Li, F. Long, S. Q. Zeng, Q. M. Luo, P. N. Hedde, G. U. Nienhaus, and Z. L. Huang, “Ultra-fast, high-precision image analysis for localization-based super resolution microscopy,” Opt. Express 18(11), 11867–11876 (2010).
[Crossref] [PubMed]

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

T. W. Quan, S. Q. Zeng, and Z. L. Huang, “Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging,” J. Biomed. Opt. 15(6), 066005 (2010).
[Crossref] [PubMed]

B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

2009 (2)

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
[Crossref] [PubMed]

G. Holst, “Scientific CMOS image sensors,” Laser Photon. 5, 18–21 (2009).

2008 (1)

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

2007 (1)

B. Moomaw, “Camera technologies for low light imaging: overview and relative advantages,” Methods Cell Biol. 81, 251–283 (2007).
[Crossref] [PubMed]

2006 (2)

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

2004 (1)

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref] [PubMed]

2003 (1)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003).
[Crossref]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

1998 (1)

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Appelbaum, J.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Babcock, H.

B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Balicki, J.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Bates, M.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

Bigas, M.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

Biteen, J. S.

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

Bruchez, M. P.

Cabruja, E.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

Chen, K. H.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

Churchman, L. S.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Conley, N. R.

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

DeCenzo, S. H.

Dempsey, G. T.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

Denk, W.

J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science 334(6056), 618–623 (2011).
[Crossref] [PubMed]

DeSantis, M. C.

Ding, J. P.

Do, H.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

El Gamal, A.

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Fernández-Suárez, M.

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Flyvbjerg, H.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Forest, J.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

Fowler, B.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Fowlera, B.

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Gould, T. J.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
[Crossref] [PubMed]

Hadwen, B. J.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003).
[Crossref]

He, J.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Hedde, P. N.

Hess, S. T.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
[Crossref] [PubMed]

Holst, G.

G. Holst, “Scientific CMOS image sensors,” Laser Photon. 5, 18–21 (2009).

Huang, B.

B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Huang, Z. L.

Huijsing, J. H.

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

Jones, S. A.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Joubert, J. R.

J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra 45, 46–50 (2011).

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Li, J. L.

Li, P. C.

Li, W.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Lichtman, J. W.

J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science 334(6056), 618–623 (2011).
[Crossref] [PubMed]

Liu, C. A.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Liu, X. Q.

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Liu, Y. F.

Long, F.

Lord, S. J.

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

Luo, Q. M.

Ma, H. Q.

Maji, S.

Makinwa, K. A. A.

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

Mims, S.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Min, H.

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

Moerner, W. E.

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

Moomaw, B.

B. Moomaw, “Camera technologies for low light imaging: overview and relative advantages,” Methods Cell Biol. 81, 251–283 (2007).
[Crossref] [PubMed]

Mortensen, K. I.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Nienhaus, G. U.

Ober, R. J.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref] [PubMed]

Qin, L. S.

Quan, T. W.

T. W. Quan, S. Q. Zeng, and Z. L. Huang, “Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging,” J. Biomed. Opt. 15(6), 066005 (2010).
[Crossref] [PubMed]

T. W. Quan, P. C. Li, F. Long, S. Q. Zeng, Q. M. Luo, P. N. Hedde, G. U. Nienhaus, and Z. L. Huang, “Ultra-fast, high-precision image analysis for localization-based super resolution microscopy,” Opt. Express 18(11), 11867–11876 (2010).
[Crossref] [PubMed]

Ram, S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref] [PubMed]

Robbins, M. S.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003).
[Crossref]

Salvi, J.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

Saurabh, S.

Sharma, D. K.

J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra 45, 46–50 (2011).

Shim, S. H.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Snoeij, M. F.

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

Spudich, J. A.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Theuwissen, A. J. P.

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

Thompson, M. A.

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Ting, A. Y.

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Vaughan, J. C.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

Verkhusha, V. V.

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
[Crossref] [PubMed]

Vu, P.

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Wang, Y. M.

Ward, E. S.

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Zeng, S. Q.

Zhang, Z. H.

Zhu, H. Y.

Zhuang, X.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Zhuang, X. W.

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Biophys. J. (2)

R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86(2), 1185–1200 (2004).
[Crossref] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Cell (1)

B. Huang, H. Babcock, and X. W. Zhuang, “Breaking the diffraction barrier: Super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

IEEE J. Solid-st. Circulation (1)

M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS imager with column-level ADC using dynamic column fixed-pattern noise reduction,” IEEE J. Solid-st. Circulation 41, 3007–3015 (2006).

IEEE Trans. Electron. Dev. (1)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003).
[Crossref]

J. Biomed. Opt. (1)

T. W. Quan, S. Q. Zeng, and Z. L. Huang, “Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging,” J. Biomed. Opt. 15(6), 066005 (2010).
[Crossref] [PubMed]

Laser Photon. (1)

G. Holst, “Scientific CMOS image sensors,” Laser Photon. 5, 18–21 (2009).

Methods Cell Biol. (1)

B. Moomaw, “Camera technologies for low light imaging: overview and relative advantages,” Methods Cell Biol. 81, 251–283 (2007).
[Crossref] [PubMed]

Methods Enzymol. (1)

M. A. Thompson, J. S. Biteen, S. J. Lord, N. R. Conley, and W. E. Moerner, “Molecules and methods for super-resolution imaging,” Methods Enzymol. 475, 27–59 (2010).
[Crossref] [PubMed]

Microelectron. J. (1)

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, “Review of CMOS image sensors,” Microelectron. J. 37(5), 433–451 (2006).
[Crossref]

Nat. Methods (3)

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, and X. W. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011).
[Crossref] [PubMed]

Nat. Protoc. (1)

T. J. Gould, V. V. Verkhusha, and S. T. Hess, “Imaging biological structures with fluorescence photoactivation localization microscopy,” Nat. Protoc. 4(3), 291–308 (2009).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Photon. Spectra (1)

J. R. Joubert and D. K. Sharma, “EMCCD vs. sCMOS for microscopic imaging,” Photon. Spectra 45, 46–50 (2011).

Proc. SPIE (2)

A. El Gamal, B. Fowlera, H. Min, and X. Q. Liu, “Modeling and estimation of FPN components in CMOS image,” Proc. SPIE 3301, 168–177 (1998).
[Crossref]

B. Fowler, C. A. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[Crossref]

Science (1)

J. W. Lichtman and W. Denk, “The big and the small: Challenges of imaging the brain’s circuits,” Science 334(6056), 618–623 (2011).
[Crossref] [PubMed]

Other (10)

H. Shroff, H. White, and E. Betzig, “Photoactivated localization microscopy (PALM) of adhesion complexes,” Curr. Protoc. Cell Biol. Chapter 4, Unit 4.21 (2008).

P. Seitz and A. J. P. Theuwissen, Single-photon imaging (Springer, Heidelberg, N. Y., 2011).

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

http://sales.hamamatsu.com/assets/pdf/hpspdf/Flash4-ChangingTheGame.pdf , accessed May 2012.

http://www.scmos.com/files/high/scmos_white_paper_8mb.pdf , accessed May 2012.

J. R. Janesick, Photon transfer: DN [lambda] (SPIE, Bellingham, Wash., 2007).

http://www.andor.com/pdfs/spec_sheets/L897SS.pdf , accessed May 2012.

http://www.photometrics.com/products/datasheets/HQ2.pdf , accessed May 2012.

http://sales.hamamatsu.com/assets/pdf/hpspdf/e_orcaFlashE01.pdf , accessed May 2012.

http://sales.hamamatsu.com/assets/pdf/hpspdf/e_flash4.pdf , accessed May 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics