Abstract

Highly efficient plasmonic nanofocusing is proposed and demonstrated in a T-shape micro-slit surrounded by multi-slits. The nanofocusing phenomenon is achieved based on the multimode interference in the micro-slit, the constructive interference in the T-shape slit, and also the multiple-beam interference of the light radiated from the multi-slits and the transmitted light from the T-shape micro-slit. Because of the large illumination areas of the incident light on the wide slit aperture in the proposed structure, a large amount of light can pass through the wide slit. This leads to a highly efficient nanofocusing. Meanwhile, the wide slit means easy fabrication. In the experiment, the focusing phenomenon in the proposed structure was successfully demonstrated with a scanning near-field optical microscopy (SNOM) technology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  5. B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
    [CrossRef]
  6. F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
    [CrossRef]
  7. B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
    [CrossRef]
  8. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
    [CrossRef]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
    [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  11. F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010).
    [CrossRef] [PubMed]
  12. J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010).
    [CrossRef]
  13. H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
    [CrossRef]
  14. S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).
  15. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).
  16. Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004).
    [CrossRef]
  17. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  18. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express17(22), 19757–19762 (2009).
    [CrossRef] [PubMed]
  19. S. Cherukulappurath, D. Heinis, J. Cesario, N. F. van Hulst, S. Enoch, and R. Quidant, “Local observation of plasmon focusingin Talbot carpets,” Opt. Express17(26), 23772–23784 (2009).
    [CrossRef] [PubMed]
  20. L. L. Li, Y. Q. Fu, H. S. Wu, L. G. Zheng, H. X. Zhang, Z. W. Lu, Q. Sun, and W. X. Yu, “The Talbot effect of plasmonic nanolenses,” Opt. Express19(20), 19365–19373 (2011).
    [CrossRef] [PubMed]
  21. H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
    [CrossRef]
  22. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  24. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  25. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
    [CrossRef]
  26. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
    [CrossRef] [PubMed]

2011

L. L. Li, Y. Q. Fu, H. S. Wu, L. G. Zheng, H. X. Zhang, Z. W. Lu, Q. Sun, and W. X. Yu, “The Talbot effect of plasmonic nanolenses,” Opt. Express19(20), 19365–19373 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

2010

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010).
[CrossRef] [PubMed]

J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010).
[CrossRef]

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

2009

2008

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

2007

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
[CrossRef]

S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).

2006

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

2005

2004

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004).
[CrossRef]

2003

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1998

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1995

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Braat, J. J. M.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

Cesario, J.

Chen, J. J.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Cherukulappurath, S.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dong, X. C.

Du, C.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
[CrossRef]

Du, C. L.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

Fu, Y. Q.

L. L. Li, Y. Q. Fu, H. S. Wu, L. G. Zheng, H. X. Zhang, Z. W. Lu, Q. Sun, and W. X. Yu, “The Talbot effect of plasmonic nanolenses,” Opt. Express19(20), 19365–19373 (2011).
[CrossRef] [PubMed]

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

Gao, H. T.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gong, Q. H.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

Groen, F. H.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Gu, M.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

Guo, L. J.

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

Hao, F. H.

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010).
[CrossRef] [PubMed]

F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
[CrossRef]

Heinis, D.

Jia, B. H.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

Kim, H. K.

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, J. F.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

Li, L. L.

Li, Z.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Lim, Y.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

Lim, Y. J.

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Lu, Z. W.

Luo, X.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
[CrossRef]

Luo, X. G.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Park, J.

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Pereira, S. F.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

Quidant, R.

Shi, H.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
[CrossRef]

Shi, H. F.

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Sun, Q.

Sun, Z. J.

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

van Hulst, N. F.

Wang, C. T.

Wang, H. F.

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

Wang, J.

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010).
[CrossRef] [PubMed]

J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
[CrossRef]

W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express17(22), 19757–19762 (2009).
[CrossRef] [PubMed]

Wang, R.

F. H. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express18(15), 15741–15746 (2010).
[CrossRef] [PubMed]

F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, H. S.

Yu, W. X.

Yue, S.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

Zhang, H. X.

Zhang, J.

Zhang, W.

Zhao, C.

Zheng, L. G.

Zhou, W.

J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010).
[CrossRef]

Appl. Phys. Lett.

B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett.94(15), 151912 (2009).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett.91(9), 093111 (2007).
[CrossRef]

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

S. Kim and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90, 0511131 (2007).

S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett.92, 0131031 (2008).

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett.85(4), 642–644 (2004).
[CrossRef]

H. F. Wang, F. H. Groen, S. F. Pereira, and J. J. M. Braat, “Optical waveguide focusing system with short free-working distance,” Appl. Phys. Lett.83(22), 4486 (2003).
[CrossRef]

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Nano Lett.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11(7), 2933–2937 (2011).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Plasmonics

J. Wang and W. Zhou, “Experimental Investigation of Focusing of gold planar plasmonic lenses,” Plasmonics5(4), 325–329 (2010).
[CrossRef]

F. H. Hao, R. Wang, and J. Wang, “A novel design method of focusing-control device by modulating SPPs scattering,” Plasmonics5(1), 45–49 (2010).
[CrossRef]

Prog. Quantum Electron.

B. Lee, S. Kim, H. Kim, and Y. J. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other

H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry of a micro-slit under illumination of p-polarized light. Intensity distribution calculated by FEM for three typical slit widths of (b) w = 1200 nm, (c) w = 1800 nm, and (d) w = 2400 nm, respectively.

Fig. 2
Fig. 2

(a) Schematic and geometric parameters of the T-shape micro-slit. (b) Dependences of the focusing intensities on the slit widths. (c) Intensity distribution in the T-shape micro-slit for w = 1200 nm and wgroove = 150 nm.

Fig. 3
Fig. 3

(a) Schematic diagram of the T-shape micro-slit surrounded by multi-slits. (b) Field intensity distribution and (c) cross section of the normalized intensity along the x-axis direction at the spot position of z = 1600 nm.

Fig. 4
Fig. 4

(a) Schematic of the experimental process in the T-shape micro-slit surrounded by multi-slits. Inset shows the detailed SEM image of the fabricated sample. (b) Topographic image of the fabricated sample by SNOM. Field distributions of the transmitted light on the planes (parallel to metal surface) (c) far from and (d) near the focusing spot position by SNOM.

Fig. 5
Fig. 5

Experimental and simulation results of the field distributions for the cross section along the x-axis direction for different positions of (a) z = 1300 nm and (b) z = 1400 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ= k SPP L( w Groove )+φ
ψ( x s ) k 0 ( f 2 + x s 2 f),(s=1,2,3...),

Metrics