Abstract

A novel method is proposed for generating sharper fluorescent super-resolution spot by azimuthally polarized beam in stimulated emission depletion (STED) microscopy. The incoherent superposition of azimuthally polarized beam with five-zone binary phase plate and the same beam with quadrant 0/πphase plate can yield a tightly focused doughnut spot surrounded completely and uniformly. And azimuthally polarized beam modulated by a vortex 0—2π phase plate works as pump beam. Compared with known effective excitation spot yielded by circular polarized STED beam, the azimuthally polarized beam result is shaper, as well as energy-saving, costing only ~50% of the energy cost by circular polarized beam. A STED beam of less intensity has the potential to reduce fluorescence photobleaching and photodamage in living cell imaging. In addition, the influence of Ez absence as well as FWHM of pump beam in the focal field is discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  2. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
    [CrossRef] [PubMed]
  3. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002).
    [CrossRef] [PubMed]
  4. V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
    [CrossRef]
  5. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
    [CrossRef] [PubMed]
  6. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
    [CrossRef] [PubMed]
  7. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
    [CrossRef]
  8. B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
    [CrossRef] [PubMed]
  9. S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
    [CrossRef]
  10. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011).
    [CrossRef] [PubMed]
  11. M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express20(5), 5243–5263 (2012).
    [CrossRef] [PubMed]
  12. Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
    [CrossRef]
  13. N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007).
    [CrossRef]
  14. N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
    [CrossRef] [PubMed]
  15. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  16. C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
    [CrossRef]
  17. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
    [CrossRef]
  18. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
    [CrossRef]
  19. B. R. Boruah, “Programmable Diffractive Optics for Laser Scanning Confocal Microscopy,” in Imperial College London (Imperial College London, 2007).
  20. V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
    [CrossRef]
  21. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
    [CrossRef] [PubMed]
  22. X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
    [CrossRef] [PubMed]
  23. M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
    [CrossRef]
  24. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
    [CrossRef] [PubMed]
  25. Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
    [CrossRef]
  26. N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
    [CrossRef]
  27. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express20(7), 7362–7374 (2012).
    [CrossRef] [PubMed]
  28. V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
    [CrossRef]
  29. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]

2012

2011

T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express19(14), 13351–13357 (2011).
[CrossRef] [PubMed]

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

2010

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

2009

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

2008

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
[CrossRef] [PubMed]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

2007

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007).
[CrossRef]

2006

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

2005

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
[CrossRef]

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

2003

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
[CrossRef]

2002

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002).
[CrossRef] [PubMed]

2001

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

1999

1994

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Benfenati, F.

Bewersdorf, J.

Bianchini, P.

Blanca, C. M.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

Bokor, N.

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Daigoku, K.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

Davidson, N.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007).
[CrossRef]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Diaspro, A.

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Dyba, M.

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
[CrossRef]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002).
[CrossRef] [PubMed]

Eggeling, C.

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express20(5), 5243–5263 (2012).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Egner, A.

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
[CrossRef]

Fujii, M.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Galiani, S.

Gould, T. J.

Gu, Z.

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Hao, X.

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

Harke, B.

Hell, S. W.

M. Leutenegger, C. Ringemann, T. Lasser, S. W. Hell, and C. Eggeling, “Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS),” Opt. Express20(5), 5243–5263 (2012).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
[CrossRef]

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
[CrossRef]

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002).
[CrossRef] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
[CrossRef] [PubMed]

Iketaki, Y.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Ishiuchi, S.-i.

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Kastrup, L.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
[CrossRef]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

Keller, J.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
[CrossRef]

Klar, T. A.

Ku, Y.

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

Kuang, C.

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

Lasser, T.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Leutenegger, M.

Lignani, G.

Liu, X.

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Myers, J. R.

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Ringemann, C.

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Sakai, M.

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

Salditt, T.

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

Schmidt, R.

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
[CrossRef]

Schönle, A.

Seeger, J.

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Ullal, C. K.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

Vicidomini, G.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

Wang, T.

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett.35(23), 3928–3930 (2010).
[CrossRef] [PubMed]

Watanabe, T.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

N. Bokor, Y. Iketaki, T. Watanabe, and M. Fujii, “Investigation of polarization effects for high-numerical-aperture first-order Laguerre-Gaussian beams by 2D scanning with a single fluorescent microbead,” Opt. Express13(26), 10440–10447 (2005).
[CrossRef] [PubMed]

Westphal, V.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
[CrossRef]

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

Wichmann, J.

Wildanger, D.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

Xue, Y.

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

Appl. Phys. B

V. Westphal, L. Kastrup, and S. W. Hell, “Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy,” Appl. Phys. B77(4), 377–380 (2003).
[CrossRef]

Appl. Phys. Lett.

V. Westphal, C. M. Blanca, M. Dyba, L. Kastrup, and S. W. Hell, “Laser-diode-stimulated emission depletion microscopy,” Appl. Phys. Lett.82(18), 3125–3127 (2003).
[CrossRef]

J. Microsc.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

J. Opt.

Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt.13(12), 125704 (2011).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

V. Westphal, J. Seeger, T. Salditt, and S. W. Hell, “Stimulated emission depletion microscopy on lithographic nanostructures,” J. Phys. At. Mol. Opt. Phys.38(9), S695–S705 (2005).
[CrossRef]

Nano Lett.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett.8(5), 1309–1313 (2008).
[CrossRef] [PubMed]

Nat. Photonics

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics3(7), 381–387 (2009).
[CrossRef]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008).
[CrossRef]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

New J. Phys.

M. Dyba, J. Keller, and S. W. Hell, “Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment,” New J. Phys.7, 134 (2005).
[CrossRef]

Opt. Commun.

N. Bokor, Y. Iketaki, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun.272(1), 263–268 (2007).
[CrossRef]

C. Kuang, X. Hao, X. Liu, T. Wang, and Y. Ku, “Formation of sub-half-wavelength focal spot with ultra long depth of focus,” Opt. Commun.284(7), 1766–1769 (2011).
[CrossRef]

N. Bokor and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun.279(2), 229–234 (2007).
[CrossRef]

Opt. Eng.

Y. Iketaki, T. Watanabe, M. Sakai, S.-i. Ishiuchi, M. Fujii, and T. Watanabe, “Theoretical investigation of the point-spread function given by super-resolving fluorescence microscopy using two-color fluorescence dip spectroscopy,” Opt. Eng.44(3), 033602–033609 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett.88(16), 163901 (2002).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett.94(14), 143903 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Science

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Other

B. R. Boruah, “Programmable Diffractive Optics for Laser Scanning Confocal Microscopy,” in Imperial College London (Imperial College London, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) The system constructed to create the STED spot. PC: azimuthally polarization converter; BS: beam splitter; PP1: five-zone binary 0/π phase plate; PP2: quadrant 0/π phase plate; AL: apochromatic lens. Laser: linear polarized Gaussian beam. (b) 3D view of the two phase plates

Fig. 2
Fig. 2

Amplitude transmission function T( θ ) for the binary phase plate. 3D figure is shown in Fig. 1(b). The second ring and fourth ring have a phase delay of π

Fig. 3
Fig. 3

The intensity of azimuthally polarized beam with the binary phase plate (Fig. 2) (beam (1)), as well as the squares of the local electric field components |Ex|2, |Ey|2, and |Ez|2 in XY plane at the focal point for an aplanatic system with NA = 1.4.

Fig. 4
Fig. 4

The intensity of azimuthally polarized beam with the quadrant 0/π phase plate (beam (2)), as well as the squares of the local electric field components |Ex|2, |Ey|2, and |Ez|2 in XY plane at the focal point for an aplanatic system with NA = 1.4.

Fig. 5
Fig. 5

STED beam is the incoherent superposition result of beam (1) and beam (2) without rescaling. (a) The intensity distribution; (b) |Ex|2 component; (c) |Ey|2 component; (d) |Ez|2 component.

Fig. 6
Fig. 6

(a) The intensity of azimuthally polarized beam with the vortex 02π phase plate (pump beam); (b-d) the squares of the local electric field components |Ex|2,|Ey|2,|Ez|2 in XY plane at the focal point.

Fig. 7
Fig. 7

The intensity of right handed circular polarized beam with vortex 02π phase plate (STED beam), as well as the squares of the local electric field components |Ex|2,|Ey|2,|Ez|2 in XY plane at the focal point.

Fig. 8
Fig. 8

The intensity of right handed circular polarized beam (pump beam), as well as the squares of the local electric field components |Ex|2,|Ey|2,|Ez|2 in XY plane at the focal point.

Fig. 9
Fig. 9

The comparison of azimuthally polarized beam and circular polarized beam. (a) STED beam, cross section of Fig. 5(a) and Fig. 7(a). The peak to peak distance of azimuthally polarized beam is 0.364λ/NA, while that of circular polarized beam is 0.443λ/NA (b) Pump beam, cross section of Fig. 6(a) and Fig. 8(a). The FWHM of azimuthally polarized beam is 0.270λ/NA, while that of circular polarized beam is 0.273λ/NA. (Red dotted curve refers to circular polarized beam, and blue curve refers to azimuthally polarized beam)

Fig. 10
Fig. 10

(a) The pump beam (i.e., the focal spot without STED beam depletion) and (b) the effective excitation spot, with the incoherent superposition of beam (1) and beam (2) working as the STED beam. (c) The comparison of cross section FWHM between pump beam and effective beam. The FWHM of excitation spot is 201nm, and the FWHM of effective spot is 19nm, that is, 0.026λ/NA.

Fig. 11
Fig. 11

(a) The pump beam (right-handed circular polarized beam) and (b) the effective excitation spot, with right-handed circular polarized beam with vortex 02π phase plate working as the STED beam. (c) The comparison of cross-section FWHM between pump beam and effective excitation beam. The FWHM of excitation spot is 203nm, and the FWHM of effective spot is 29nm, that is, 0.039λ/NA.

Fig. 12
Fig. 12

The FWHM of effective spot versus the input energy. For the same STED beam, increasing ISTED can improve resolution. And fluorescent molecules are gradually bleached, for the depletion efficiency become lower and lower.

Fig. 13
Fig. 13

The major axis of the fluorescent molecules is in Z axis. When it is excited, the fluorescence propagates in the XY plane. The fluorescence cannot be collected by the detector in Z direction.

Fig. 14
Fig. 14

Comparison of FWHM of pump beams cross-section. The FWHM of Gaussian beam is 201nm (0.270λ/NA), and the FWHM of Bessel Gaussian beam is 165nm (0.222λ/NA). (Red dotted curve refers to Bessel Gaussian beam, and blue curve refers to Gaussian beam) (NA = 1.4, λ = 532nm)

Fig. 15
Fig. 15

The comparison of effective excitation beam focused by Gaussian beam and Bessel Gaussian beam respectively. (a) Cross-section of Gaussian pump beam and effective beam. The FWHM of Gaussian pump beam spot is ~201nm, and that of the effective spot is ~19nm (0.026λ/NA). (b) Cross-section of Bessel Gaussian pump beam and effective beam. The FWHM of Bessel Gaussian beam spot is much smaller to ~165nm while the FWHM of effective spot is ~17nm (0.023λ/NA). (NA = 1.4, λ = 532nm)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( r 2 , φ 2 , z 2 )=iC Ω sin( θ ) A 1 ( θ,φ ) A 2 ( θ,φ )[ p x p y p z ]exp[ ikn( z 2 cosθ+ r 2 sinθcos(φ φ 2 ) ) ] exp[ iΔα( θ,φ ) ]dθdφ .
T( θ )={ 1,for 0θ< θ 1 , θ 2 θ< θ 3 , θ 4 θ<α, 1,for θ 1 θ< θ 2 , θ 3 θ< θ 4 .
r 1 =0.10, r 2 =0.40, r 3 =0.62, r 4 =0.77.
Δα=π( 0ϕ< π 2 &πϕ< 3π 2 ),Δα=0( π 2 ϕ<π& 3π 2 ϕ<2π ).
D=1/[1+C ( n E STED ) 2 ].
I STED ( r )= sin 2 ( rπ/ p d ).
I eff ( r )= I pump ( r )×exp[ I STED ( r )τ σ dip ].
Δr λ 2nsinα 1+ς

Metrics