Abstract

In this work, we describe finite element simulations of the plasmonic resonance (PLR) properties of a self-similar chain of plasmonic nanostructures. Using a broad range of conditions, we find strong numerical evidence that the electric field confinement behaves as (Ξ/λ)PLREFE-γ, where EFE is the electric field enhancement, Ξis the linear size of the focusing length, and λ is the wavelength of the resonant excitation. We find that the exponent γ is close to 1, i.e. significantly lower than the 1.5 found for two-dimensional nanodisks. This scaling law provides support for the hypothesis of a universal regime in which the sub-optical wavelength electric field confinement is controlled by the Euclidean dimensionality and is independent of nanoparticle size, metal nature, or embedding medium permittivity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
  2. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).
  3. A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).
  4. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
    [CrossRef] [PubMed]
  5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
    [CrossRef] [PubMed]
  6. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
    [CrossRef] [PubMed]
  7. Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
    [CrossRef] [PubMed]
  8. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
    [CrossRef] [PubMed]
  9. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  10. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
    [CrossRef] [PubMed]
  11. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
    [CrossRef]
  12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  13. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
    [CrossRef]
  14. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
    [CrossRef]
  15. Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).
  16. J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express17(14), 11607–11617 (2009).
    [CrossRef] [PubMed]
  17. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
    [CrossRef]
  18. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  19. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
    [CrossRef]
  20. G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
    [CrossRef]
  21. COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).
  22. M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
    [CrossRef] [PubMed]
  23. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
    [CrossRef] [PubMed]
  24. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
    [CrossRef] [PubMed]
  25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
    [CrossRef] [PubMed]
  26. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
    [CrossRef]
  27. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
    [CrossRef]
  28. B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
    [CrossRef] [PubMed]
  29. V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).
  30. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15(7), 4253–4267 (2007).
    [CrossRef] [PubMed]
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  34. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26(14), 1096–1098 (2001).
    [CrossRef] [PubMed]
  36. H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
    [CrossRef]
  37. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
    [CrossRef]
  38. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
    [CrossRef]
  39. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
    [CrossRef]
  40. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
    [CrossRef] [PubMed]
  41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
    [CrossRef]
  42. J. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001).
    [CrossRef] [PubMed]
  43. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  44. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
    [CrossRef] [PubMed]
  45. J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
    [CrossRef]
  46. G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
    [CrossRef]
  47. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  48. J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
    [CrossRef] [PubMed]
  49. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
    [CrossRef] [PubMed]
  50. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
    [CrossRef]
  51. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
    [CrossRef]
  52. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
    [CrossRef]
  53. V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
    [CrossRef]
  54. V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
    [CrossRef]
  55. B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
    [CrossRef] [PubMed]
  56. K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
    [CrossRef] [PubMed]
  57. H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
    [CrossRef]
  58. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
    [CrossRef]
  59. J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express13(21), 8332–8338 (2005).
    [CrossRef] [PubMed]
  60. L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
    [CrossRef]
  61. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
    [CrossRef] [PubMed]

2012

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

2011

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

2010

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

2009

J. Borneman, K.-P. Chen, A. Kildishev, and V. Shalaev, “Simplified model for periodic nanoantennae: linear model and inverse design,” Opt. Express17(14), 11607–11617 (2009).
[CrossRef] [PubMed]

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

2008

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

2007

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express15(7), 4253–4267 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

2006

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

2005

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

J. Kim, G. Liu, Y. Lu, and L. Lee, “Intra-particle plasmonic coupling of tip and cavity resonance modes in metallic apertured nanocavities,” Opt. Express13(21), 8332–8338 (2005).
[CrossRef] [PubMed]

2004

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
[CrossRef]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

2003

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

2001

1998

1997

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
[CrossRef] [PubMed]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

1996

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

1983

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Alexander, R. W.

Ali, T. A.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Apell, S. P.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

Barnes, W. L.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Bidault, S.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Blanco, L. A.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Bocchio, N.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

Bokor, J.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Borneman, J.

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Brosseau, C.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

Burin, A. L.

Burrows, C. P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Cabrini, S.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Cajko, F.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Cao, H.

Casiraghi, C.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Castel, V.

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

Chen, K.-P.

Cheng, W.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Clime, L.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Coluccio, M. L.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Cui, B.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Dai, J.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Das, G.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

De Angelis, F.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Deng, Z.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Di Fabrizio, E.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Ding, B.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Essone Mezeme, M.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Foteinopoulou, S.

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

García de Abajo, F. J.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Geim, A. K.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Goodrich, G. P.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Grady, N. K.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Hafner, J. H.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Halas, N. J.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Hanson, G. W.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hofmann, C.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Hong, M.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Ignatov, A.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

Kelly, A. T.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Kildishev, A.

Kim, J.

Klar, P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Kneipp, H.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kneipp, J.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kneipp, K.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Kobayashi, T.

Kottmann, J.

Kottmann, J. P.

Kravets, V. G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Kreiter, M.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Krenn, J. R.

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lasquellec, S.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lee, L.

Lee, L. P.

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

Lei, D. Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Leitner, A.

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Levin, C. S.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Li, K.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Li, X.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Li, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Liu, G.

Long, L. L.

Lu, Y.

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Luo, X.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Luo, Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

Maier, S. A.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Martin, O. J. F.

Mayergoyz, I. D.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Mecarini, F.

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Monreal, R. C.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

Morimoto, A.

Morosan, E.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Nieto-Vesperinas, M.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Nordlander, P.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Panne, U.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Polman, A.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

Poponin, V.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Quinten, M.

Ratner, M. A.

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Rochholz, H.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Ross, B. M.

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, “High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers,” J. Opt. Soc. Am. B21(1), 121–131 (2004).
[CrossRef]

Schedin, F.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Shalaev, V.

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Sherwood, M.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

Stockman, M. I.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Takahara, J.

Taki, H.

Tam, F.

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Tsukerman, I.

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Vandenbem, C.

Veres, T.

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Vigneron, J. P.

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Ward, C. A.

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Whitmire, K. H.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

Xu, H.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

Yamagishi, S.

Yan, H.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

Yang, L.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

Yang, Z.

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Zhang, Z.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Zoriniants, G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Zuckermann, R. N.

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

ACS Nano

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano3(6), 1379–1388 (2009).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. (Deerfield Beach Fla.)17(17), 2131–2134 (2005).
[CrossRef]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009).
[CrossRef]

Anal. Chem.

J. Kneipp, X. Li, M. Sherwood, U. Panne, H. Kneipp, M. I. Stockman, and K. Kneipp, “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Anal. Chem.80(11), 4247–4251 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

V. Castel and C. Brosseau, “Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy,” Appl. Phys. Lett.92(23), 233110 (2008).
[CrossRef]

J. Am. Chem. Soc.

S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc.130(9), 2750–2751 (2008).
[CrossRef] [PubMed]

B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, “Gold nanoparticle self-similar chain structure organized by DNA origami,” J. Am. Chem. Soc.132(10), 3248–3249 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

G. W. Hanson, R. C. Monreal, and S. P. Apell, “Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles,” J. Appl. Phys.109(12), 124306 (2011).
[CrossRef]

J. Chem. Phys.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Comput. Theor. Nanosci.

L. Yang, X. Luo, and M. Hong, “Self-similar chain of nanocrescents as a surface-enhanced Raman scattering substrate,” J. Comput. Theor. Nanosci.7(8), 1364–1367 (2010).
[CrossRef]

J. Korean Phys. Soc.

V. Poponin and A. Ignatov, “Local field enhancement in star-like sets of plasmon nanoparticles,” J. Korean Phys. Soc.47, S222–S228 (2005).

J. Opt. Soc. Am. B

J. Phys. Chem. C

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112(46), 17983–17987 (2008).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C111, 17451–17454 (2007).
[CrossRef]

Nano Lett.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells,” Nano Lett.7(9), 2854–2858 (2007).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett.10(7), 2574–2579 (2010).
[CrossRef] [PubMed]

C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett.4(12), 2355–2359 (2004).
[CrossRef]

Nanoscale

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4(1), 76–90 (2011).
[CrossRef] [PubMed]

Nanotechnology

B. M. Ross and L. P. Lee, “Plasmon tuning and local field enhancement maximization of the nanocrescent,” Nanotechnology19(27), 275201 (2008).
[CrossRef] [PubMed]

K. Li, L. Clime, B. Cui, and T. Veres, “Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays,” Nanotechnology19(14), 145305 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6(5), 268–276 (2011).
[CrossRef] [PubMed]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008).
[CrossRef]

Nat. Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007).
[CrossRef]

New J. Phys.

H. Rochholz, N. Bocchio, and M. Kreiter, “Tuning resonances on crescent-shaped noble-metal nanoparticles,” New J. Phys.9(3), 53–70 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Phys. Rev. B

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76(24), 245403 (2007).
[CrossRef]

H. Xu, “Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field,” Phys. Rev. B72(7), 073405 (2005).
[CrossRef]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, “Plasmon excitation in sets of nanoscale cylinders and spheres,” Phys. Rev. B73(3), 035403 (2006).
[CrossRef]

V. Castel and C. Brosseau, “Electron magnetic resonance study of transition-metal magnetic nanoclusters embedded in metal-oxides,” Phys. Rev. B77(13), 134424 (2008).
[CrossRef]

J. Dai, F. Čajko, I. Tsukerman, and M. I. Stockman, “Electrodynamic effects in plasmonic nanolenses,” Phys. Rev. B77(11), 115419 (2008).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Long-wavelength electromagnetic propagation in magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057602 (2010).
[CrossRef] [PubMed]

M. Essone Mezeme, S. Lasquellec, and C. Brosseau, “Subwavelength control of electromagnetic field confinement in self-similar chains of magnetoplasmonic core-shell nanostructures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026612 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett.87(16), 167401 (2001).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91(22), 227402 (2003).
[CrossRef] [PubMed]

Z. Li, Z. Yang, and H. Xu, “Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”,” Phys. Rev. Lett.97(7), 079701, discussion 079702 (2006).
[CrossRef] [PubMed]

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Broadband light harvesting nanostructures robust to edge bluntness,” Phys. Rev. Lett.108(2), 023901 (2012).
[CrossRef] [PubMed]

Proc. SPIE

G. Das, F. De Angelis, M. L. Coluccio, F. Mecarini, and E. Di Fabrizio, “Spectroscopy nanofabrication and biophotonics,” Proc. SPIE7205, 720508, 720508-10 (2009).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science277(5329), 1078–1081 (1997).
[CrossRef] [PubMed]

Other

COMSOL Multiphysics User’s Guide, version 3.4; Comsol Inc. (2006).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, 1998).

A. Maier, Plasmonics: Fundamental and Applications (Springer, 2007).

Properties of Nanostructured Random Media, V. M. Shalaev, ed. (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The geometry of the problem is shown schematically. The coordinate system used in the calculations is indicated. The external field is applied to the system in the x direction. The position of the hot spot corresponding to the maximum field enhancement is indicated by the dot near the smallest particle. The numerical parameters for calculations were: R1 = 185 nm and L = 1226 nm. This two-phase system consists of a self-similar chain of plasmonic nanospheres (phase 2) embedded in a surrounding medium (phase 1). The (i + 1)th sphere has outer radius R i+1 =k R i . The spherical inclusions have permittivity ε 2 = ε 2 ' j ε 2 " and the host’s permittivity reads ε 1 = ε 1 ' with ε 1 ' =1.77 in the THz range of frequencies [22].

Fig. 2
Fig. 2

(a) Universal scaling of the relative focusing length, Ξ/λ , with respect to the PLR wavelength of the excitation, as a function of EFE for the array of nanoparticles shown in Fig. 1 at various model parameters. The figure is plotted on a log-log scale and the slope of the solid line is −1. (a) = 0.6 fixed. Symbols are (open squares) k = 0.30, (open circles) k = 0.31, (open triangles) k = 0.32, (solid squares) k = 0.33, (solid diamonds) k = 0.34, (solid triangles) k = 0.35. The metal phase is assumed to be Au. (b) k = 0.33. Symbols are: (open diamonds) = 0.3, (solid circles) = 0.4, (open triangles) = 0.5, (solid squares) = 0.6. The metal phase is assumed to be Au. (c) l = 0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and surrounding medium is water; (solid circles) metal phase is Au and surrounding medium is air. (d) = 0.6 and k = 0.33. Symbols are: (solid squares) metal phase is Au and no FSC is considered, (solid circles) metal phase is Ag and no FSC is considered, (solid triangles) metal phase is Au and FSC is considered, (solid diamonds) Fe3O4-Au CS nanoparticles (t = 0.2) and no FSC is considered.

Fig. 3
Fig. 3

A comparison of EFE with the estimates of the cascade amplification coefficient g N and g ¯ N , suggested by different authors [47,45], for the various cases of metal phase/embedding medium considered in Fig. 2(a), 2(b), 2(c). Squares (resp. crosses) correspond to g N (resp. g ¯ N ). The solid line corresponds to EFE= g N or g ¯ N .

Fig. 4
Fig. 4

A comparison of the imaginary parts of the effective permittivity for self-similar chains of Au nanospheres embedded in water with (green line) or without (black line) FSC. = 0.6 and k = 0.33. The asterisk indicates the PLR spectral position corresponding to the maximum field enhancement. (a) first iteration (b) second iteration, (c) third iteration, and (d) fourth iteration.

Fig. 5
Fig. 5

Same as in Fig. 4 for self-similar chains of Fe3O4-Au CS nanoparticles embedded in water without FSC (blue line). = 0.6, k = 0.33, and t = 0.2. The value of ε " for self-similar chains of Au nanospheres embedded in water without (black line) FSC is shown for comparison.

Metrics