Abstract

We carry out the theoretical study for the generation of vacuum-ultraviolet pulses with a Doppler-broadened gas utilizing high atomic coherence. It is essentially a difference-frequency generation scheme induced by the two-photon near-resonant pump and probe pulses, where the key point is to generate high atomic coherence between the ground and two-photon near-resonant states through a variant of stimulated Raman adiabatic passage with a time-dependent detuning. The advantage of our scheme is that the degree of coherence is sensitive to neither the exact amount and even sign of the detuning, nor the exact timing between the pump, auxiliary, and probe pulses. Hence our scheme is practically insensitive to Doppler broadening. As a specific example, we consider the generation of picosecond Lyman-α pulses with a Kr gas, and quantitatively study the influence of Doppler broadening as well as the intensity and incident timing of the picosecond probe pulse with respect to the pump pulse. The numerical results indicate that our scheme has a certain advantage over the conventional scheme which utilizes two-photon resonant excitation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
    [CrossRef]
  2. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
    [CrossRef] [PubMed]
  3. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73, 063407 (2006).
    [CrossRef]
  4. R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
    [CrossRef]
  5. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
    [CrossRef]
  6. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B4, 1753–1764 (1987).
    [CrossRef]
  7. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum–difference frequency mixing in krypton,” J. Opt. Soc. Am. B7, 1254–1259 (1990).
    [CrossRef]
  8. C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
    [CrossRef]
  9. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
    [CrossRef] [PubMed]
  10. A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett.24, 625–627 (1999).
    [CrossRef]
  11. S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
    [CrossRef]
  12. T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
    [CrossRef]
  13. M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
    [CrossRef]
  14. S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
    [CrossRef]
  15. N. V. Vitanov and B. W. Shore, “Stimulated Raman adiabatic passage in a two-state system,” Phys. Rev. A73, 053402 (2006).
    [CrossRef]
  16. R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
    [CrossRef]
  17. T. Nakajima, “A scheme to polarize nuclear-spin of atoms by a sequence of short laser pulses: application to the muonium,” Opt. Express18, 27468–27480 (2010).
    [CrossRef]
  18. http://j-parc.jp/MatLife/en/index.html
  19. V. S. Malinovsky and J. L. Krause, “General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses,” Eur. Phys. J. D14, 147–155 (2001).
    [CrossRef]
  20. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
    [CrossRef] [PubMed]
  21. M. Aymar and M. Coulombe, “Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra,” Atom. Data Nucl. Data21, 537–566 (1978).
    [CrossRef]
  22. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
    [CrossRef]
  23. Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
    [CrossRef]
  24. S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett.22, 636–638 (1997).
    [CrossRef] [PubMed]

2010 (2)

S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
[CrossRef]

T. Nakajima, “A scheme to polarize nuclear-spin of atoms by a sequence of short laser pulses: application to the muonium,” Opt. Express18, 27468–27480 (2010).
[CrossRef]

2009 (1)

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

2008 (1)

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

2006 (3)

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73, 063407 (2006).
[CrossRef]

M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
[CrossRef]

N. V. Vitanov and B. W. Shore, “Stimulated Raman adiabatic passage in a two-state system,” Phys. Rev. A73, 053402 (2006).
[CrossRef]

2003 (1)

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
[CrossRef]

2002 (2)

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

2001 (3)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
[CrossRef] [PubMed]

V. S. Malinovsky and J. L. Krause, “General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses,” Eur. Phys. J. D14, 147–155 (2001).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

1999 (4)

C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
[CrossRef]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
[CrossRef]

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett.24, 625–627 (1999).
[CrossRef]

1997 (1)

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

1990 (1)

1987 (1)

1978 (2)

M. Aymar and M. Coulombe, “Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra,” Atom. Data Nucl. Data21, 537–566 (1978).
[CrossRef]

R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
[CrossRef]

Ahufinger, V.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Aymar, M.

M. Aymar and M. Coulombe, “Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra,” Atom. Data Nucl. Data21, 537–566 (1978).
[CrossRef]

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Chakrabarti, S.

S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
[CrossRef]

Connerade, J. P.

Corbalan, R.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Coulombe, M.

M. Aymar and M. Coulombe, “Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra,” Atom. Data Nucl. Data21, 537–566 (1978).
[CrossRef]

Dorman, C.

C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
[CrossRef]

Eikema, K. S. E.

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
[CrossRef] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
[CrossRef]

El-Dakrouri, A.

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

George, T. F.

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

Gupta, M. C.

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

Halfmann, T.

S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
[CrossRef]

M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
[CrossRef]

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
[CrossRef]

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Hänsch, T. W.

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
[CrossRef] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
[CrossRef]

Harris, S. E.

Hilber, G.

Hutchinson, M. H. R.

Inoue, F.

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

Jain, M.

S. E. Harris and M. Jain, “Optical parametric oscillators pumped by population-trapped atoms,” Opt. Lett.22, 636–638 (1997).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

Kanda, K.

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

Kielpinski, D.

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73, 063407 (2006).
[CrossRef]

Klein, J.

M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
[CrossRef]

Koopman, D. W.

R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
[CrossRef]

Krause, J. L.

V. S. Malinovsky and J. L. Krause, “General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses,” Eur. Phys. J. D14, 147–155 (2001).
[CrossRef]

Kucukkara, I.

C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
[CrossRef]

Lago, A.

Laroussi, M.

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

Loiko, Y.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Ma, H.

Mahon, R.

R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
[CrossRef]

Malinovsky, V. S.

V. S. Malinovsky and J. L. Krause, “General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses,” Eur. Phys. J. D14, 147–155 (2001).
[CrossRef]

Manuszak, D.

Marangos, J. P.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
[CrossRef]

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
[CrossRef]

J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum–difference frequency mixing in krypton,” J. Opt. Soc. Am. B7, 1254–1259 (1990).
[CrossRef]

Mcllrath, T. J.

R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
[CrossRef]

Merriam, A. J.

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett.24, 625–627 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

Mompart, J.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Muench, H.

S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
[CrossRef]

Myslivets, S. A.

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

Nakajima, T.

Oberst, M.

M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
[CrossRef]

Popov, A. K.

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

Rickes, T.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
[CrossRef]

Serrat, C.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Sharpe, S. J.

Shen, N.

Shore, B. W.

N. V. Vitanov and B. W. Shore, “Stimulated Raman adiabatic passage in a two-state system,” Phys. Rev. A73, 053402 (2006).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
[CrossRef]

Suominen, K. A.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
[CrossRef]

Toyoda, K.

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

Urabe, S.

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

Vilaseca, R.

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

Vitanov, N. V.

N. V. Vitanov and B. W. Shore, “Stimulated Raman adiabatic passage in a two-state system,” Phys. Rev. A73, 053402 (2006).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
[CrossRef]

Wallenstein, R.

Walz, J.

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
[CrossRef] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
[CrossRef]

Xia, H.

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett.24, 625–627 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

Yamazaki, R.

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

Yan, J.

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

Yin, G. Y.

A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett.24, 625–627 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Mahon, T. J. Mcllrath, and D. W. Koopman, “Nonlinear generation of Lyman alpha radiation,” Appl. Phys. Lett.33, 305–307 (1978).
[CrossRef]

Atom. Data Nucl. Data (1)

M. Aymar and M. Coulombe, “Theoretical transition probabilities and lifetimes in Kr I and Xe I spectra,” Atom. Data Nucl. Data21, 537–566 (1978).
[CrossRef]

Eur. Phys. J. D (1)

V. S. Malinovsky and J. L. Krause, “General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses,” Eur. Phys. J. D14, 147–155 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B32, 4535–4546 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B20, 2574–2577 (2002).
[CrossRef]

Opt. Commun. (3)

S. A. Myslivets, A. K. Popov, T. Halfmann, J. P. Marangos, and T. F. George, “Nonlinear-optical vacuum ultraviolet generation at maximum atomic coherence controlled by a laser-induced Stark chirp of two-photon resonance,” Opt. Commun.209, 335–347 (2002).
[CrossRef]

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage,” Opt. Commun.227, 133–142 (2003).
[CrossRef]

M. Oberst, J. Klein, and T. Halfmann, “Enhanced four-wave mixing in mercury isotopes, prepared by Stark-chirped rapid adiabatic passage,” Opt. Commun.264, 463–470 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (6)

Y. Loiko, C. Serrat, R. Vilaseca, V. Ahufinger, J. Mompart, and R. Corbalan, “Doppler-free adiabatic self-induced transparency,” Phys. Rev. A79, 053809 (2009).
[CrossRef]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A73, 063407 (2006).
[CrossRef]

S. Chakrabarti, H. Muench, and T. Halfmann, “Adiabatically driven frequency conversion towards short extreme-ultraviolet radiation pulses,” Phys. Rev. A82, 063817 (2010).
[CrossRef]

N. V. Vitanov and B. W. Shore, “Stimulated Raman adiabatic passage in a two-state system,” Phys. Rev. A73, 053402 (2006).
[CrossRef]

R. Yamazaki, K. Kanda, F. Inoue, K. Toyoda, and S. Urabe, “Robust generation of superposition states,” Phys. Rev. A78, 023808 (2008).
[CrossRef]

C. Dorman, I. Kucukkara, and J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A61, 013802 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett.77, 4326–4329 (1996).
[CrossRef] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman-α excitation of atomic hydrogen,” Phys. Rev. Lett.86, 5679–5682 (2001).
[CrossRef] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett.83, 3828–3831 (1999).
[CrossRef]

Other (1)

http://j-parc.jp/MatLife/en/index.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Proto-type scheme for the D-STIRAP process in a two-level system. (b) Time sequence of the detuning, Δ, and Rabi frequency, Ω, and the resulting time-evolution of atomic coherence to the maximum value, 0.5. As the STIRAP process realizes complete population transfer from the initial to the final state in a three level Λ-system, the D-STIRAP process realizes perfect coherence in the two-level system.

Fig. 2
Fig. 2

Schematic diagram of the FWM process in Kr atoms. Δ14 is a dynamic detuning due to the Stark shifts, Γ4 is an ionization rate from state |4〉, γ42 and γ43 are spontaneous decay rates from state |4〉 to states |2〉 and |〉, respectively.

Fig. 3
Fig. 3

(a) Illustration of the pulse sequence under the present study with Kr atoms for the case of δ = 0 (red solid line), which is to be compared with the prototype of the D-STIRAP process shown in Fig. 1. The case of finite positive/negative laser detuning (red dashed/dotted line) is also shown in this graph. Note that the detuning denoted by Δ14 includes contributions from both pump and Stark pulses, while the Rabi frequency pulse denoted by Ω pump ( 2 ) is solely from the pump pulse. (b) Color-coded plot of final coherence, |ρ14|, by the D-STIRAP scheme as functions of the intensities of the pump and Stark pulses without Doppler broadening for the case of tStark = −0.9 ns and zero laser detuning, δ = 0. (c) Similar plot to graph (b) but with a finite laser detuning, δ = −3.2 GHz.

Fig. 4
Fig. 4

(a) Color-coded plot of final coherence, |ρ14|, by the D-STIRAP scheme as functions of the intensities of the Stark and pump pulses with Doppler broadening. The laser detuning and incident timing of Stark pulse are chosen to be δ = −3.2 GHz and tStark = −0.9 ns. (b) Color-coded plot of final coherence, |ρ14|, as functions the laser detuning and incident timing of Stark pulse under Doppler broadening. The intensities of the pump and Stark pulses are chosen to be IStark = 0.5 GW/cm2 and Ipump = 0.4 GW/cm2.

Fig. 5
Fig. 5

Prepared coherence by the D-STIRAP scheme in Kr atoms as a function of atomic velocity at Ipump = 0.4 GW/cm2, IStark = 0.5 GW/cm2, δ = −3.2 GHz, and tStark = −0.9 ns. The Maxwell distribution is also shown.

Fig. 6
Fig. 6

(a) Color-coded plot of coherence, |ρ14|, by the D-STIRAP scheme at the time of 4 ns as functions of the intensities of the Stark and pump pulses under Doppler broadening with ionization and spontaneous decays. The laser detuning and incident timing of the Stark pulse are chosen to be δ = −3.2 GHz and tStark = −0.9 ns. (b) Comparison of our D-STIRAP scheme (black dashed line) with the two-photon resonant excitation scheme (black solid line) assuming the ionization cross section of 3 Mb from state |4〉 at 212.6 nm. For the D-STIRAP scheme Ipump = 0.4 GW/cm2, IStark = 0.5 GW/cm2, δ = −3.2 GHz, and tStark = −0.9 ns, while for the two-photon resonant excitation scheme Ipump = 2 GW/cm2 and δ = −1.3 GHz to maximize the peak value of atomic coherence. Besides, we also show the results with ±20% different pump intensities by the red and green lines for each scheme, respectively. The results we obtain by assuming the ionization cross section of 30 Mb are also shown by blue lines.

Fig. 7
Fig. 7

Spatial evolution of the probe and Lyman-α pulses by the D-STIRAP scheme for (a) Iprobe = 0.05 GW/cm2 and tprobe = 0.3 ns without Doppler broadening, (b) Iprobe = 0.4 GW/cm2 and tprobe = 0.3 ns without Doppler broadening, and (c) Iprobe = 0.05 GW/cm2 and tprobe = 0.3 ns with Doppler broadening. (d) Spatial evolution of the Lyman-α pulse by the D-STIRAP scheme for Iprobe = 0.05 GW/cm2 with Doppler broadening at two different timings of the probe pulse, tprobe = 0.3 and 4 ns. Ionization and spontaneous decays from state |4〉 are included for all cases.

Fig. 8
Fig. 8

Spatial evolution of the probe and Lyman-α pulses by the two-photon resonant scheme for (a) Iprobe = 0.05 GW/cm2 and tprobe = −0.65 ns without Doppler broadening, (b) Iprobe = 0.4 GW/cm2 and tprobe = −0.65 ns without Doppler broadening, and (c) Iprobe = 0.05 GW/cm2 and tprobe = −0.65 ns with Doppler broadening. (d) Spatial evolution of the Lyman-α pulse by the two-photon resonant scheme for Iprobe = 0.05 GW/cm2 with Doppler broadening at two different timings of the probe pulse, tprobe = −0.65 and 4 ns. Ionization and spontaneous decays from state |4〉 are included for all cases.

Fig. 9
Fig. 9

Prepared coherence at t = −0.65 ns (see Fig. 6(b)) by the two-photon resonant scheme in Kr atoms as a function of atomic velocity at Ipump = 2 GW/cm2 and δ = −1.3 GHz. The Maxwell distribution is also shown. Note that ionization and spontaneous decays are included.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

i ρ ˙ 11 = Ω pump ( 2 ) 2 ( ρ 41 ρ 14 ) ,
i ρ ˙ 14 = ( δ + Δ 14 ) ρ 14 + Ω pump ( 2 ) 2 ( ρ 44 ρ 11 ) 1 2 i ( γ 4 + Γ 4 ) ρ ˙ 14 ,
i ρ ˙ 44 = Ω pump ( 2 ) 2 ( ρ 14 ρ 41 ) i ( γ 4 + Γ 4 ) ρ ˙ 44 .
E i = ε i 0 exp [ ln 4 ( t t i ) 2 τ i 2 ] ( i = pump or Stark ) ,
Δ 14 = i = pump , Stark j ( | μ 4 j | 2 4 h ¯ 2 Δ 4 j | μ 1 j | 2 4 h ¯ 2 Δ 1 j ) | E i | 2 ,
Ω pump ( 2 ) = j μ 1 j μ j 4 2 h ¯ 2 Δ 1 j E pump 2 .
Δ 14 ( rad / ns ) 454 I Stark + 17.6 I pump
Ω pump ( 2 ) ( rad / ns ) 16 I pump ,
Γ pump ( ns 1 ) = 3.2 I pump .
z E probe = i ζ h ¯ ω probe N [ ( a probe ρ 11 + d probe ρ 44 ) E probe + b probe ρ 14 E Lyman * ] ,
z E Lyman = i ζ h ¯ ω Lyman N [ ( a Lyman ρ 11 + d Lyman ρ 44 ) E Lyman + c Lyman ρ 14 E probe * ] ,
a q = 1 2 h ¯ 2 j = 2 , 3 | μ 1 j | 2 ( ω j ω 1 ) ± ω q ,
d q = 1 2 h ¯ 2 j = 2 , 3 | μ 4 j | 2 ( ω j ω 4 ) ± ω q ,
b q = 1 2 h ¯ 2 j = 2 , 3 [ μ 1 j μ 4 j ( ω j ω 1 ) ω q + μ 1 j μ 4 j ( ω j ω 4 ) + ω q ] ,
c q = b q * ,
Δ 14 ( rad / ns ) = 454 I Stark + 17.6 I pump + 800.2 I probe + 7.3 I Lyman
Γ 4 ( ns 1 ) = 3.2 I pump + 1.8 I Lyman ,
η = W Lyman ( J ) / [ W pump input ( J ) + W probe input ( J ) ] ,

Metrics