Abstract

We design a compact embedded metallic elliptical focus grating coupler based on gold or silver that efficiently interconnects free space with silicon nitride waveguide at 632.8nm wavelength. The 3D far-field radiation pattern for the proposed grating coupler shows much higher gain and directivity towards free space coupling than that of the etched grating coupler. Specifically the free space transmission efficiency achieves 65% for silver grating coupler. It can also further enhance the fluorescence signal detection for Cy-5 fluorophore by isolating peak diffraction angle for 10°. The dense system integration capability shows the application potential for on-chip interfacing sub-wavelength light processing circuits and near-field fluorescent biosensors with far-field detection of superb radiation directivity and coupling efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
    [CrossRef]
  2. W. K. Burns and G. B. Hocker, “End fire coupling between optical fibers and diffused channel waveguides,” Appl. Opt.16(8), 2048–2050 (1977).
    [CrossRef] [PubMed]
  3. Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
    [CrossRef]
  4. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
    [CrossRef] [PubMed]
  5. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
    [CrossRef]
  6. C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
    [CrossRef]
  7. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
    [CrossRef]
  8. K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
    [CrossRef]
  9. K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
    [CrossRef]
  10. K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
    [CrossRef]
  11. Y. Wang, Y.-Y. Huang, and X. J. Zhang, “Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe,” Opt. Express18(13), 14004–14011 (2010).
    [CrossRef] [PubMed]
  12. Y. Lee, A. Alu, and J. X. Zhang, “Efficient apertureless scanning probes using patterned plasmonic surfaces,” Opt. Express19(27), 25990–25999 (2011).
    [CrossRef] [PubMed]
  13. L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
    [CrossRef]
  14. L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011).
    [CrossRef] [PubMed]
  15. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
    [CrossRef] [PubMed]
  16. L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
    [CrossRef]
  17. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
    [CrossRef] [PubMed]
  18. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
    [CrossRef] [PubMed]
  19. A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
    [CrossRef] [PubMed]
  20. R. Waldhäusl, B. Schnabel, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt.36(36), 9383–9390 (1997).
    [CrossRef] [PubMed]
  21. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
    [CrossRef]
  22. T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
    [CrossRef]
  23. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
    [CrossRef]
  24. J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007).
    [CrossRef]
  25. CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Boca Raton, FL, 2005).
  26. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  27. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
    [CrossRef]
  28. F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett.446(1-3), 115–118 (2007).
    [CrossRef]
  29. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
    [CrossRef]
  30. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005).
    [CrossRef] [PubMed]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006 p.
  33. CST Microwave Studio, 2010.
  34. P. C. Mathias, H. Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
    [CrossRef] [PubMed]

2011

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011).
[CrossRef] [PubMed]

Y. Lee, A. Alu, and J. X. Zhang, “Efficient apertureless scanning probes using patterned plasmonic surfaces,” Opt. Express19(27), 25990–25999 (2011).
[CrossRef] [PubMed]

2010

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Y. Wang, Y.-Y. Huang, and X. J. Zhang, “Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe,” Opt. Express18(13), 14004–14011 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
[CrossRef]

2009

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
[CrossRef]

P. C. Mathias, H. Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

2008

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

2007

2005

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

2004

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

2002

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

2001

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

1997

1995

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

1977

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Agan, S.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

Alu, A.

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Ay, F.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

Aydinli, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

Ayre, M.

Baets, R.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Bashir, R.

Bauer, J.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Block, I. D.

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bräuer, A.

Bruns, J.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Buhl, L.

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

Burns, W. K.

Carter, J. M.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Chaudhery, V.

Chen, L.

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

Chen, Y.-K.

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cingolani, R.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Cunningham, B. T.

Dannberg, P.

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

De Vittorio, M.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Doerr, C.

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

Dorvel, B. R.

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Gajda, A.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Ganesh, N.

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Giuntoni, I.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Gopal, A.

K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
[CrossRef]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Gray, S.

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Hao, F.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett.446(1-3), 115–118 (2007).
[CrossRef]

Ho, S.-T.

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

Hocker, G. B.

Hoshino, K.

L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011).
[CrossRef] [PubMed]

L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
[CrossRef]

K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

Huang, C. S.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Huang, Y.-Y.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jones, S. I.

Karthe, W.

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Kley, E. B.

Kocabas, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

Kocabas, C.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

Krauss, T. F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Kumar Dhungel, S.

J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Lee, T. W.

Lee, Y.

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Loh, T.-H.

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

Lu, M.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Marschmeyer, S.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Martiradonna, L.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Mathias, P. C.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Ng, D. K. T.

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett.446(1-3), 115–118 (2007).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Petermann, K.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Pisanello, F.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Pokhriyal, A.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

Pompa, P. P.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Qualtieri, A.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Richter, H.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Roelkens, G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Rozanski, L. J.

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

Sabella, S.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Savas, T. A.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Schattenburg, M. L.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Scheerlinck, S.

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

Schnabel, B.

Schrauwen, J.

Schulz, S.

A. Pokhriyal, M. Lu, V. Chaudhery, C. S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

Shah, S. N.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Smith, H. I.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Stolarek, D.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Stomeo, T.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Taillaert, D.

Tillack, B.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Van Laere, F.

Van Thourhout, D.

van Veggel, F. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Vanden Bout, D. A.

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

Vecchio, G.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Vodkin, L. O.

Waldhäusl, R.

Wang, L.

L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011).
[CrossRef] [PubMed]

L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
[CrossRef]

Wang, Q.

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

Wang, Y.

Wu, H. Y.

P. C. Mathias, H. Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

Yi, J.

J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007).
[CrossRef]

Yoo, J.

J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007).
[CrossRef]

Zhang, J. X.

Zhang, X. J.

L. Wang, K. Hoshino, and X. J. Zhang, “Light focusing by slot Fabry-Perot photonic crystal nanoresonator on scanning tip,” Opt. Lett.36(10), 1917–1919 (2011).
[CrossRef] [PubMed]

L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
[CrossRef]

Y. Wang, Y.-Y. Huang, and X. J. Zhang, “Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe,” Opt. Express18(13), 14004–14011 (2010).
[CrossRef] [PubMed]

K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

Zimmermann, L.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. C. Mathias, H. Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Near-field scanning optical microscopy with monolithic silicon light emitting diode on probe tip,” Appl. Phys. Lett.92(13), 131106 (2008).
[CrossRef]

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett.96(11), 113702 (2010).
[CrossRef]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multicolor fluorescence enhancement from a photonics crystal surface,” Appl. Phys. Lett.97(12), 121108 (2010).
[CrossRef] [PubMed]

Chem. Phys. Lett.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett.446(1-3), 115–118 (2007).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

IEEE J. Quantum Electron.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Hoshino, A. Gopal, and X. J. Zhang, “Near-Field Scanning Nanophotonic Microscopy—Breaking the Diffraction Limit Using Integrated Nano Light-Emitting Probe Tip,” IEEE J. Sel. Top. Quantum Electron.15(5), 1393–1399 (2009).
[CrossRef]

Q. Wang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Design and Analysis of Optical Coupling Between Silicon Nanophotonic Waveguide and Standard Single-Mode Fiber Using an Integrated Asymmetric Super-GRIN Lens,” IEEE J. Sel. Top. Quantum Electron.17(3), 581–589 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett.22(19), 1461–1463 (2010).
[CrossRef]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV Technology for the Fabrication of Bragg Gratings on SOI Rib Waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009).
[CrossRef]

J. Appl. Phys.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90(8), 3825–3830 (2001).
[CrossRef]

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys.96(12), 7147–7153 (2004).
[CrossRef]

J. Lightwave Technol.

J. Microelectromech. Syst.

K. Hoshino, L. J. Rozanski, D. A. Vanden Bout, and X. J. Zhang, “Direct Fabrication of Nanoscale Light Emitting Diode on Silicon Probe Tip for Scanning Microscopy,” J. Microelectromech. Syst.17(1), 4–10 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Achromatic interferometric lithography for 100-nm-period gratings and grids,” J. Vac. Sci. Technol. B13(6), 2732–2735 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron.33(4/5), 327–341 (2001).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Phys. Rev. Lett.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett.89(20), 203002 (2002).
[CrossRef] [PubMed]

Proc. SPIE

L. Wang, K. Hoshino, and X. J. Zhang, “Numerical simulation of photonic crystal based nano-resonators on scanning probe tip for enhanced light confinement,” Proc. SPIE7729, 77291M, 77291M–12 (2010).
[CrossRef]

Thin Solid Films

J. Yoo, S. Kumar Dhungel, and J. Yi, “Annealing optimization of silicon nitride film for solar cell application,” Thin Solid Films515(19), 7611–7614 (2007).
[CrossRef]

Other

CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Boca Raton, FL, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006 p.

CST Microwave Studio, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Design of etched silicon nitride grating coupler. (a) CAMFR calculation model on eigenmodes of the 1D partially etched grating on silicon nitride waveguide layer on top of the silicon dioxide substrate; (b) 3D FDTD model with spherical axis as labeled.

Fig. 2
Fig. 2

Reflection (bottom solid lines) and out-of-plane coupling (top dashed lines) rates as function of grating pitch period for etching depth ranging from 70nm to 120nm.

Fig. 3
Fig. 3

Far-field directivity plots of 3D focusing grating coupler fabricated by etching method for polar angle θ on φ = 0° plane. The grating etching depth is 110nm with effective grating index of 1.7529. (a) Coupler with peak reflection resonance with peak directivity of 504 towards free space; (b) Same effective grating coupler index but with tilted radiation angle of θ1 = 100. It achieves free space directivity of 567.

Fig. 4
Fig. 4

Noble metal grating on top of the silicon dioxide layer for interfacing far-field free space and silicon nitride dielectric rib waveguide (geometry not to scale). (a) Vertical cross section view on xz plane where the 1st order diffraction angle is θ from z axis; (b) 3D illustration of the coupler including the metal focus grating ellipses and silicon nitride single mode dielectric rib waveguide.

Fig. 5
Fig. 5

Relative permittivity as calculated by Drude-Lorentz (DL) model as compared with the experiment data in [26] by Johnson and Christy (JC) for both gold and silver for wavelength range from 500 nm to 1000 nm. (a) real part of permittivity; (b) imaginary part permittivity.

Fig. 6
Fig. 6

Free space transmission efficiencies by sweeping grating pitch period from 355 nm to 420 nm for Au and Ag through 2D FDTD model.

Fig. 7
Fig. 7

Ey field plots of an optimized gold focusing grating coupler excited by 632.8nm TE0 waveguide source on the center cross section planes of the coupler. (a) Field plot on xz center plane; (b) Field plot on xy plane along the silicon nitride slab center. The focusing point at (0, 0) on xy plane is as indicated. Grating pitch period Λ = 397.5nm, thickness of gold layer = 40nm, silicon nitride waveguide layer thickness = 250nm.

Fig. 8
Fig. 8

Far-field radiation pattern for incident waveguide source light at wavelength 632.8nm. (a) 3D directivity pattern as functions of spherical angles for Ag grating coupler with peak directivity of 841; (b) Normalized far-field power radiation pattern as function of θ on φ = 0 plane; (c) Far-field directivity as function of θ on φ = 0 plane in unit of dBi. The black curve represents silver grating and red one is for gold grating.

Fig. 9
Fig. 9

Far-field radiation pattern for fluorescence wavelength at 690nm. (a) 3D directivity pattern as functions of spherical angles for Ag grating coupler with peak directivity of 345; (b) Normalized far field power radiation pattern as function of θ on φ = 0 plane; (b) Far-field directivity as function of θ on φ = 0 plane in unit of dBi. The black curve represents silver grating and red one is for gold grating.

Tables (1)

Tables Icon

Table 1 Drude-Lorentz Parameters Optimized for Dispersive Dielectric Properties of Gold and Silver in 500 nm to 1000 nm Wavelength Range for FDTD Modeling

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff = λ 0 Λ p .
n eff = n 0 sin θ 1 + λ 0 Λ
q λ 0 = n eff x 2 + y 2 x n 0 sin θ 1 ,q=1,2,3,...,
ε(ω)= ε ω D 2 ω+i γ D ω + n σ n ω n 2 ω n 2 ω 2 iω γ n
( x qλ n 0 sin θ 1 n eff 2 n 0 2 sin 2 θ 1 ) 2 ( qλ n eff n eff 2 n 0 2 sin 2 θ 1 ) 2 + y 2 ( qλ ( n eff 2 n 0 2 sin 2 θ 1 ) 0.5 ) 2 =1

Metrics