Abstract

We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured to have bulk refractive index sensitivities of 169 nm/RIU at a laser wavelength of 600 nm, demonstrating strongly increased overlap of the modes with the analyte in comparison to solid state evanescent wave sensors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
    [CrossRef]
  2. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
    [CrossRef]
  3. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
    [CrossRef] [PubMed]
  4. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012).
    [CrossRef] [PubMed]
  5. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008).
    [CrossRef] [PubMed]
  6. T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TRAC-Trend. Anal. Chem.23, 385–392 (2004).
  7. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010).
    [CrossRef]
  8. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
    [CrossRef] [PubMed]
  9. Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem.124(5), 1262–1265 (2012).
    [CrossRef]
  10. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
    [CrossRef]
  11. N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express18(12), 12903–12908 (2010).
    [CrossRef] [PubMed]
  12. K. Sagar, N. Gopalakrishnan, M. B. Christiansen, A. Kristensen, and S. Ndoni, “Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry,” J. Micromech. Microeng.21(9), 095001 (2011).
    [CrossRef]
  13. N. Gopalakrishnan, M. B. Christiansen, and A. Kristensen, “Nanofiltering via integrated liquid core waveguides,” Opt. Lett.36(17), 3350–3352 (2011).
    [CrossRef] [PubMed]
  14. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
    [CrossRef]
  15. L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
    [CrossRef]
  16. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  17. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
    [CrossRef] [PubMed]

2012 (2)

M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012).
[CrossRef] [PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem.124(5), 1262–1265 (2012).
[CrossRef]

2011 (7)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

K. Sagar, N. Gopalakrishnan, M. B. Christiansen, A. Kristensen, and S. Ndoni, “Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry,” J. Micromech. Microeng.21(9), 095001 (2011).
[CrossRef]

N. Gopalakrishnan, M. B. Christiansen, and A. Kristensen, “Nanofiltering via integrated liquid core waveguides,” Opt. Lett.36(17), 3350–3352 (2011).
[CrossRef] [PubMed]

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

2010 (3)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express18(12), 12903–12908 (2010).
[CrossRef] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010).
[CrossRef]

2009 (1)

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

2008 (2)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

2005 (1)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

2004 (1)

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TRAC-Trend. Anal. Chem.23, 385–392 (2004).

Armani, A. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

Berg, R. H.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Christiansen, M. B.

Dallas, T.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TRAC-Trend. Anal. Chem.23, 385–392 (2004).

Dasgupta, P. K.

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TRAC-Trend. Anal. Chem.23, 385–392 (2004).

Erickson, D.

M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012).
[CrossRef] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Fan, X.

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem.124(5), 1262–1265 (2012).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Goddard, J. M.

Gopalakrishnan, N.

Grydgaard, A.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Guo, F.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Jakobsen, M. R.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Kristensen, A.

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Li, H.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010).
[CrossRef]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

Liu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

Mancuso, M.

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

Ndoni, S.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

K. Sagar, N. Gopalakrishnan, M. B. Christiansen, A. Kristensen, and S. Ndoni, “Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry,” J. Micromech. Microeng.21(9), 095001 (2011).
[CrossRef]

N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express18(12), 12903–12908 (2010).
[CrossRef] [PubMed]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Sagar, K.

K. Sagar, N. Gopalakrishnan, M. B. Christiansen, A. Kristensen, and S. Ndoni, “Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry,” J. Micromech. Microeng.21(9), 095001 (2011).
[CrossRef]

Sagar, K. S.

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

Schulte, L.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Shang, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Sun, Y.

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem.124(5), 1262–1265 (2012).
[CrossRef]

Szewczykowski, P. P.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Tu, X.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

Vigild, M. E.

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

N. Gopalakrishnan, K. S. Sagar, M. B. Christiansen, M. E. Vigild, S. Ndoni, and A. Kristensen, “UV patterned nanoporous solid-liquid core waveguides,” Opt. Express18(12), 12903–12908 (2010).
[CrossRef] [PubMed]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Xu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20(7), 1038–1052 (2010).
[CrossRef]

Angew. Chem. (1)

Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angew. Chem.124(5), 1262–1265 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett.87(15), 151118 (2005).
[CrossRef]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc.131(46), 16612–16613 (2009).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

K. Sagar, N. Gopalakrishnan, M. B. Christiansen, A. Kristensen, and S. Ndoni, “Photolithographic fabrication of solid–liquid core waveguides by thiol-ene chemistry,” J. Micromech. Microeng.21(9), 095001 (2011).
[CrossRef]

Microfluid. Nanofluid. (1)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid.4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics5(10), 583–590 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Polymer (Guildf.) (1)

L. Schulte, A. Grydgaard, M. R. Jakobsen, P. P. Szewczykowski, F. Guo, M. E. Vigild, R. H. Berg, and S. Ndoni, “Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers,” Polymer (Guildf.)52(2), 422–429 (2011).
[CrossRef]

TRAC-Trend. Anal. Chem. (1)

T. Dallas and P. K. Dasgupta, “Light at the end of the tunnel: recent analytical applications of liquid-core waveguides,” TRAC-Trend. Anal. Chem.23, 385–392 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the layer system used for fabrication of nanoporous ring resonator lasers via DLW. (b) Optical micrograph during the exposure showing the laserspot and the exposed ring. (c) Schematic of the sample after the exposure. The exposed areas contain hydrophilic nanopores and are embedded within the hydrophobic nanoporous polymer. (d) Optical micrograph of the sample after the direct laser writing process. The ring has a diameter of 150 µm and a width of 5 µm.

Fig. 2
Fig. 2

(a) Schematic and (b) microscope image of a dye-doped nanoporous sample without water. (c) Schematic and (d) microscope image of a sample with a waterfilm on top resulting in an infiltrated ring with increased refractive index compared to the surrounding polymer matrix.

Fig. 3
Fig. 3

(a) Output spectrum of an optically pumped dye-doped liquid core ring resonator laser for different pump fluencies. (b) Input-output curve of the grey marked mode in (a) at 587 nm with a threshold pump fluence of 19 µJ/mm2. (c) High-resolution spectrum above lasing threshold, showing multiple laser modes between 603 nm and 606 nm with linewidths of 70 pm and a free spectral range of 0.5 nm.

Fig. 4
Fig. 4

Shift of the laser mode for changing refractive index surrounding for different glucose concentrations compared to pure water. The inset exemplarily shows the lasing spectra for the solutions with the three lowest concentrations. The depicted laser modes shift by 169 nm/RIU. Varying relative intensities between the peaks are related to a shift of the gain spectrum due to bleaching of dye molecules during laser operation.

Metrics