Abstract

We demonstrate the integration of short metal nanoparticle chains (L ≈700nm) supporting localized surface plasmons in Silicon On Insulator (SOI) waveguides at telecom wavelengths. Nanoparticles are deposited on the waveguide top and excited through the evanescent field of the TE waveguide modes. Finite difference time domain calculations and waveguide transmission measurements reveal that almost all the TE mode energy can be transferred to nanoparticle chains at resonance. It is also shown that the transmission spectrum is very sensitive to the molecular environment of nanoparticles, thus opening the way towards ultra-compact sensors in guided plasmonics on SOI. An experimental demonstration is reported with octadecanthiol molecules for a detection volume as small as 0.26 attoliter.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [CrossRef]
  3. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
    [CrossRef]
  4. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [CrossRef] [PubMed]
  5. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  6. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
    [CrossRef]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
    [CrossRef]
  8. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
    [CrossRef] [PubMed]
  9. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
    [CrossRef] [PubMed]
  10. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
    [CrossRef]
  11. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
    [CrossRef]
  12. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [CrossRef] [PubMed]
  13. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  15. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
    [CrossRef]
  16. A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [CrossRef]
  17. P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34(18), 2858–2860 (2009).
    [CrossRef] [PubMed]
  18. H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
    [CrossRef]
  19. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
    [CrossRef]
  20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
    [CrossRef]
  21. G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
    [CrossRef]
  22. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [CrossRef]
  23. D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
    [CrossRef] [PubMed]
  24. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  25. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
    [CrossRef] [PubMed]

2012

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

2011

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

2010

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[CrossRef]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[CrossRef] [PubMed]

2009

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34(18), 2858–2860 (2009).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

2008

2007

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
[CrossRef]

2006

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[CrossRef]

A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2000

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

1998

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Abushagur, M. A. G.

Adam, P.-M.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Aono, M.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Aussenegg, F. R.

Baets, R.

Barbillon, G.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Bienstman, P.

Bigeon, J.-L.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Chen, L.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

de Waele, R.

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
[CrossRef]

Debackere, P.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[CrossRef]

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elezzabi, A. Y.

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Enders, D.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[CrossRef]

Erickson, D.

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Femius Koenderink, A.

A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Gates, J. C.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Han, Z.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Koenderink, A. F.

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
[CrossRef]

Krenn, J. R.

Lamy De La Chapelle, M.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Leitner, A.

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[CrossRef]

Lipson, M.

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Lu, Z.

Mandal, S.

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Nagao, T.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

Nakayama, T.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

Park, Y.-S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Plain, J.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Polman, A.

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
[CrossRef]

A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Pruneri, V.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Pucci, A.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[CrossRef]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Quidant, R.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Quinten, M.

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Righini, M.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Royer, P.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Sederberg, S.

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

Shakya, J.

Smith, P. G.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Van, V.

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

Wahsheh, R. A.

Weeber, J. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Wong, H. M. K.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Yang, R.

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Zhang, X.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Appl. Phys. Lett.

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[CrossRef]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95(1), 013504 (2009).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010).
[CrossRef]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. Smith, V. Pruneri, and R. Quidant, “On-a-chip surface plasmon tweezers,” Appl. Phys. Lett. 99(6), 061107 (2011).
[CrossRef]

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wetchemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006).
[CrossRef]

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Biosens. Bioelectron.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron. 24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Nano Lett.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Lett. 7(7), 2004–2008 (2007).
[CrossRef]

Nat. Photonics

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

D. Enders, T. Nagao, A. Pucci, T. Nakayama, and M. Aono, “Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold,” Phys. Chem. Chem. Phys. 13(11), 4935–4941 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
[CrossRef]

A. Femius Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Surf. Sci.

G. Barbillon, J.-L. Bigeon, J. Plain, M. Lamy De La Chapelle, P.-M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surf. Sci. 601(21), 5057–5061 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic view of the structure that we consider. (b) Picture showing the ellipsoidal shape of gold nanoparticles with D1 (respectively D2) the long (respectively small) axis size. (c) Scanning Electron Microscopy image of five gold MNP centered on the of SOI waveguide.

Fig. 2
Fig. 2

(a) Normalized transmission spectrum (linear scale) of the SOI waveguide with gold nanoparticles deposited on top. Blue curve is for measurements. Red curve is for FDTD calculations. Inset shows the signal dynamics (log scale) around the transmission minimum. The minimum detection level is below −40dB. (b) Calculated re〉ection (black) and transmission (red) spectra.

Fig. 3
Fig. 3

Left column: maps of the field intensity (| E|2) calculated in the vertical symmetry plane of the structure for three wavelengths, 1250 nm (a), 1325 nm (b) and 1450 nm (c). Middle column: intensity profiles calculated along the nanoparticle chain axis (blue) and the SOI waveguide axis (red). Right column: top view maps of the field intensity (|E|2) calculated in the mid-plane of the nanoparticle chain.

Fig. 4
Fig. 4

(a-c): Calculated transmissions of waveguides with a chain of 5 gold nanoparticles coated with dielectric material. (a) 5 nm thick coating with refractive index n = 1.125, and 1.25, (b) 5 and 10 nm thick coatings with either n = 1.25 or n = 1.5 refractive index, (c) 5 nm thick, n = 1.125 coatings with or without absorption. Red curve in (a), (b) and (c) is the reference for uncoated gold. Inset in (a) schematizes a monolayer of thiol molecules deposited on gold. (d): Transmission minimum redshift calculated versus ∆n = n-1 using Eq. (1). Circles are FDTD calculations. The triangle is for experimental measurements with a 2 nm thick thiol layer.

Fig. 5
Fig. 5

Waveguide transmission measured without octadecanthiols (blue curve) and with octadecanthiols grafted on metallic nanoparticles (red curve). As in Fig. 2(a), oscillations in the transmission spectrum are due to Fabry-Perot (FP) resonances caused by re〉ections at the Si waveguide facets. Averaged thick curve are guides for the eyes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ (nm) 27 ( t (nm) ×Δn) 0.75 .

Metrics