Abstract

We demonstrate an extended-cavity (1-km round trip) transmitter employing a reflective-semiconductor optical amplifier (RSOA) self-seeded by spectrally-sliced passive modulation-averaging reflector. We show that using modulation averaging reflectors in self-seeded transmitters improves link margin, allows a wider range of bias conditions for the RSOA by removing the modulation in the seeding light and consequently allows operation with higher extinction ratios. We furthermore demonstrate 47 km transmission at 1.25 Gbps with a 16-channel fully passive remote node. This type of transmitter is suitable for application in colorless WDM-PON systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
    [CrossRef]
  2. C. F. Lam, Passive Optical Networks: Principles and Practice (Academic Press, 2007).
  3. B. Kim and B.-W. Kim, “WDM-PON development and deployment as a present optical access solution,” Conf. on Opt. Fiber Comm., San Diego (2009).
  4. P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
    [CrossRef]
  5. E. Wong, K. L. Lee, and T. B. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol. 25(1), 67–74 (2007).
    [CrossRef]
  6. T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
    [CrossRef]
  7. J. W. Goodman, Statistical Optics (Wiley Classics Library, 2000).
  8. A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” J. Lightwave Technol. 15(1), 53–61 (1997).
    [CrossRef]
  9. M. Presi and E. Ciaramella, “Stable self-seeding of R-SOAs for WDM-PONs,” Conf. on Opt. Fiber Comm. and Expo., Pisa, (2011).
  10. ITU-T Recommendation G.975: Forward Error Correction for Submarine Systems (10/2000).
  11. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: implications for spectrum-sliced WDM systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [CrossRef]

2012

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

2011

T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
[CrossRef]

2007

2006

2005

1997

A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” J. Lightwave Technol. 15(1), 53–61 (1997).
[CrossRef]

Anderson, T. B.

Babic, D.

T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
[CrossRef]

Chanclou, P.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Cui, A.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Geilhardt, F.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Horak, P.

Ibsen, M.

Keating, A. J.

A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” J. Lightwave Technol. 15(1), 53–61 (1997).
[CrossRef]

Kim, B. Y.

Komljenovic, T.

T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
[CrossRef]

Lee, C.-H.

Lee, K. L.

McCoy, A. D.

Nakamura, H.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Nesset, D.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Richardson, D. J.

Sampson, D. D.

A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” J. Lightwave Technol. 15(1), 53–61 (1997).
[CrossRef]

Sipus, Z.

T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
[CrossRef]

Sorin, W. V.

Thomsen, B. C.

Wong, E.

IEEE Netw.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, and D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

J. Lightwave Technol

T. Komljenovic, D. Babi?, and Z. Sipus, “Modulation-Averaging Reflectors for Extended-Cavity Optical Sources,” J. Lightwave Technol 29(15), 2249–2258 (2011).
[CrossRef]

J. Lightwave Technol.

Other

C. F. Lam, Passive Optical Networks: Principles and Practice (Academic Press, 2007).

B. Kim and B.-W. Kim, “WDM-PON development and deployment as a present optical access solution,” Conf. on Opt. Fiber Comm., San Diego (2009).

M. Presi and E. Ciaramella, “Stable self-seeding of R-SOAs for WDM-PONs,” Conf. on Opt. Fiber Comm. and Expo., Pisa, (2011).

ITU-T Recommendation G.975: Forward Error Correction for Submarine Systems (10/2000).

J. W. Goodman, Statistical Optics (Wiley Classics Library, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the demonstrated WDM transmitter employing a modulation-averaging reflector with n mirrors. The last layer is terminated with unit reflectivity (rHR = 1), while all other mirrors are semi-transparent (r < 1).

Fig. 2
Fig. 2

(a) Output powers from extended cavity for splitter ratios C = 50%, 10%, and 1%. (b) The influence of optical bandwidth on the performance of extended cavity optical source at 1250 Mbps (Ibias = 38 mA, VRF = 2 Vpp).

Fig. 3
Fig. 3

BER vs modulation voltage (ΔV) for HR and AR seeding.

Fig. 4
Fig. 4

Back-to-back receiver sensitivity for BER = 10−3, 10−6 and 10−9 vs Ibias for HR and AR cases. The VRF = 2 Vpp in all cases.

Fig. 5
Fig. 5

Transmission performance over various fiber lengths of standard G.652 fiber with a fully passive remote node for two optical bandwidths (Ibias = 35 mA, VRF = 2 Vpp).

Fig. 6
Fig. 6

Measured Q0 (markers) fitted by Eq. (3) (full lines) for two optical bandwidths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q 0 P ¯ / σ SP = M ,
Q= P ¯ / P th 2 + ( P ¯ / Q 0 ) 2 ,
Q LX Q 0 X (1+ b X 2 L 2 ) 1 /2 ,

Metrics