Abstract

We developed a new scheme for obtaining coherent random lasing based on a chip consisting of a polymer film doped with Rhodamine 6G, having as scatterers butterfly-like TiO2 nanomembranes (TiO2-NM) supported on a glass substrate. The feedback mechanism for laser action is due to the multiple scattering of light by TiO2-NM rather than provided by localized variations of the refractive index in the polymer film. The above-threshold multiple spikes signature indicative of random laser emission with coherent feedback is confirmed. As nanomembranes are foreseen as new MEMS/NEMS building blocks, a new generation of combined active/passive photonic devices can be envisaged.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
    [CrossRef]
  3. M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
    [CrossRef]
  4. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
    [CrossRef]
  5. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP26, 835–840 (1968).
  6. M. A. Noginov, Solid-State Random Lasers (Springer, Berlin, 2005).
  7. L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
    [CrossRef] [PubMed]
  8. D. S. Wiersma, “The Physics and applications of Random Lasers,” Nat. Phys.4(5), 359–367 (2008).
    [CrossRef]
  9. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
    [CrossRef] [PubMed]
  10. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
    [CrossRef]
  11. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
    [CrossRef] [PubMed]
  12. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  13. A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
    [CrossRef]
  14. M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express19(6), 5620–5626 (2011).
    [CrossRef] [PubMed]
  15. S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
    [CrossRef] [PubMed]
  16. M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
    [CrossRef]
  17. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
    [CrossRef] [PubMed]
  18. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
    [CrossRef] [PubMed]
  19. A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
    [CrossRef]
  20. C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
    [CrossRef]
  21. P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
    [CrossRef]
  22. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
    [CrossRef]
  23. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
    [CrossRef]
  24. J. Matović and Z. Jakšić, “Nanomembrane: a new MEMS/NEMS building block,” in Micro Electronic and Mechanical Systems, K. Takahata, ed. (In-Tech, 2010).

2011 (6)

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express19(6), 5620–5626 (2011).
[CrossRef] [PubMed]

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
[CrossRef] [PubMed]

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
[CrossRef]

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

2010 (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

2009 (3)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

2008 (4)

D. S. Wiersma, “The Physics and applications of Random Lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

2007 (1)

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

2003 (1)

P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
[CrossRef]

2002 (1)

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
[CrossRef]

1998 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

1986 (1)

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP26, 835–840 (1968).

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Bahoura, M.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Blanco, A.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

Briskina, C. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).

Brito-Silva, A. M.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Cao, H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Carminati, R.

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Chassagnon, R.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Chaumont, D.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Ciobanu, I.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
[CrossRef]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

de Araújo, C. B.

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express19(6), 5620–5626 (2011).
[CrossRef] [PubMed]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

de Brito Silva, A.

P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
[CrossRef]

de Lima, E.

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

de Oliveira, M. A. S.

de Oliveira, P.

P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
[CrossRef]

de Oliveira, P. C.

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

de S Menezes, L.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Froufe-Pérez, L. S.

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

Galembeck, A.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

García, P. D.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Gomes, A. S.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Gomes, A. S. L.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

Guerin, W.

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Henneberger, F.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
[CrossRef] [PubMed]

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Jesus-Silva, A. J.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Kaiser, R.

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Kalusniak, S.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
[CrossRef] [PubMed]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Lacroute, Y.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Lazar, A. M.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Leonetti, M.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP26, 835–840 (1968).

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
[CrossRef]

López, C.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

López Arbeloa, F.

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

Markushev, V. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).

Martinez Gámez, M. A.

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

Messaddeq, Y.

Morris, K. J.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
[CrossRef]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

Noginov, M. A.

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Sacilotti, M.

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

Tolentino Dominguez, C.

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Vaveliuk, P.

P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
[CrossRef]

Wang, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Wiersma, D. S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

D. S. Wiersma, “The Physics and applications of Random Lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Wünsche, H. J.

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
[CrossRef] [PubMed]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Zolin, V. F.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).

Appl. Phys. Lett. (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett.464(4-6), 245–248 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys.108(3), 033508 (2010).
[CrossRef]

Nano Lett. (2)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett.11(3), 1374–1378 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Nat. Photonics (4)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

M. Leonetti, C. Conti, and C. Lopez, “The mode-locking transition of random lasers,” Nat. Photonics5(10), 615–617 (2011).
[CrossRef]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics2(7), 429–432 (2008).
[CrossRef]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The Physics and applications of Random Lasers,” Nat. Phys.4(5), 359–367 (2008).
[CrossRef]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Opt. Commun. (1)

M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3 (BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun.201(4-6), 405–411 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

P. Vaveliuk, A. de Brito Silva, and P. de Oliveira, “Model for bichromatic laser emission from a laser dye with nanoparticle scatterers,” Phys. Rev. A68(1), 013805 (2003).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A79(5), 053817 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

S. Kalusniak, H. J. Wünsche, and F. Henneberger, “Random semiconductor lasers: scattered versus Fabry-Perot feedback,” Phys. Rev. Lett.106(1), 013901 (2011).
[CrossRef] [PubMed]

C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007).
[CrossRef] [PubMed]

L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser, “Threshold of a random laser with cold atoms,” Phys. Rev. Lett.102(17), 173903 (2009).
[CrossRef] [PubMed]

Sci. Adv. Mater. (1)

A. M. Lazar, D. Chaumont, Y. Lacroute, R. Chassagnon, I. Ciobanu, and M. Sacilotti, “Growth of three-dimensional TiO2 nanomembranes,” Sci. Adv. Mater.3(1), 102–106 (2011).
[CrossRef]

Science (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP26, 835–840 (1968).

Zh. Prikl. Spektrosk. (1)

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Powder laser,” Zh. Prikl. Spektrosk.45, 847–850 (1986).

Other (2)

M. A. Noginov, Solid-State Random Lasers (Springer, Berlin, 2005).

J. Matović and Z. Jakšić, “Nanomembrane: a new MEMS/NEMS building block,” in Micro Electronic and Mechanical Systems, K. Takahata, ed. (In-Tech, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) and (b) show SEM images at different magnifications of TiO2-NM grown on the surface of a soda lime glass using the MOCVD technique. The butterfly-like nanomembranes have ≈10 nm (the wing tip), few hundreds of nm thickness and few µm2 of surface area.

Fig. 2
Fig. 2

(a) Image showing the experimental (not in scale) scheme of excitation and emission. (b) RL integrated linewidth narrowing as a function of the pumping energy for samples Rh6G/glass (circles) and Rh6G/TiO2-NM/glass (stars). (c) and (d) are the integrated emission spectra of samples Rh6G/glass and Rh6G/TiO2-NM/glass, respectively.

Fig. 3
Fig. 3

Emission peak intensity as a function of the pumping pulse energy: (a) Sample without TiO2-NM and (b) sample with TiO2-NM.

Fig. 4
Fig. 4

(a) Emission spectra close and above to threshold from samples with TiO2-NM obtained by single shot detection; (b) Emission spectra below and above to threshold from a sample without TiO2-NM obtained by single shot excitation; (c) and (d) are two spectra of sample Rh6G/TiO2-NM/glass corresponding to pumping pulse energy of 0.41mJ/pulse and 0.59 mJ/pulse, respectively.

Metrics