Abstract

A three phase shifted (3PS) distributed feedback (DFB) semiconductor laser based on Reconstruction-Equivalent-Chirp (REC) technique is experimentally demonstrated for the first time. The simulation results show that the performances of the equivalent 3PS DFB semiconductor laser are nearly the same as that of the true 3PS laser. However, it only changes the μm-level sampling structures but the seed grating is uniform. So, its cost of fabrication is low. The measurement results exhibit its good single longitudinal mode (SLM) operation even at high bias current and surrounding temperature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol.26(9), 1132–1144 (2008).
    [CrossRef]
  2. A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
    [CrossRef]
  3. G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
    [CrossRef]
  4. M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
    [CrossRef]
  5. T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997).
    [CrossRef]
  6. Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
    [CrossRef]
  7. N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
    [CrossRef]
  8. T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
    [CrossRef]
  9. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009).
    [CrossRef]
  10. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
    [CrossRef]
  11. D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996).
    [CrossRef]
  12. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-7-5240 .
    [CrossRef] [PubMed]
  13. J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, “Monolithically integrated 30-wavelength DFB laser array,” Proc. of SPIE-OSA-IEEE 7631, 763104–1-763104–6 (2009).
  14. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express15(5), 2348–2353 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-5-2348 .
    [CrossRef] [PubMed]
  15. T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991).
    [CrossRef]
  16. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
    [CrossRef]
  17. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
    [CrossRef]

2009 (2)

2008 (1)

2007 (1)

2004 (1)

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

2001 (1)

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

1997 (3)

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997).
[CrossRef]

1996 (3)

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996).
[CrossRef]

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

1994 (1)

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

1991 (1)

T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991).
[CrossRef]

1989 (1)

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

1988 (1)

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Andreadakis, N. C.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Anthony, P. J.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Baets, R. G.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Bhat, R.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Caneau, C.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Chen, N.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Chen, X.

Chinone, N.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Chuang, S. L.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

Curtis, L.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Dai, Y.

Dong, Y.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Fang, W.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

Favire, F.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Fessant, T.

T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997).
[CrossRef]

Gamelin, J. K.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Geusic, J. E.

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

Harada, T.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Hillmer, H.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

Hsu, A.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

Huang, W.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

Iga, K.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009).
[CrossRef]

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009).
[CrossRef]

Klepser, B.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

Kobayashi, K.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Koch, T. L.

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996).
[CrossRef]

Koza, M.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Lee, T.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Lepore, A.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Li, G. P.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

Li, J.

Lin, P. S. D.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Lowery, A. J.

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

Lu, Y.

Mahoney, D. D.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Makino, T.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991).
[CrossRef]

Morthier, G. I.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Muroya, Y.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Nakano, Y.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Okai, M.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Okamoto, K.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Okuda, T.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Olesen, H.

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009).
[CrossRef]

Pathak, B.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Rahjel, A. W.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Sarangan, A.

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

Sasaki, T.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Sato, K.

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

Sergent, A. M.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

Shi, Y.

Suematsu, Y.

Tada, K.

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

Taira, H.

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

Tanbun-Ek, T.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

Tennant, D. M.

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996).
[CrossRef]

Wang, H.

Yin, Z.

Young, W. C.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Zah, C. E.

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Zhu, H.

Appl. Phys. Lett. (2)

G. P. Agrawal, J. E. Geusic, and P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett.53(3), 178–179 (1988).
[CrossRef]

T. Fessant, “Large signal dynamics of distributed feedback lasers with spatial modulation of their coupling coefficient and grating pitch,” Appl. Phys. Lett.71(20), 2880–2882 (1997).
[CrossRef]

Electron. Lett. (1)

A. J. Lowery and H. Olesen, “Dynamics of mode-instabilities in quarter-wave-shifted DFB semiconductor lasers,” Electron. Lett.30(12), 965–967 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Makino, “Transfer-Matrix analysis of the intensity and phase noise of multisection DFB semiconductor lasers,” IEEE J. Quantum Electron.27(11), 2404–2414 (1991).
[CrossRef]

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and Modeling of distributed-Feedback lasers with Spatial Hole Burning,” IEEE J. Sel. Top. Quantum Electron.3(2), 547–554 (1997).
[CrossRef]

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron.15(3), 514–520 (2009).
[CrossRef]

N. Chen, Y. Nakano, K. Okamoto, K. Tada, G. I. Morthier, and R. G. Baets, “Analysis, fabrication, and characterization of tunable DFB lasers with chirped gratings,” IEEE J. Sel. Top. Quantum Electron.3(2), 541–546 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Dong, T. Okuda, K. Sato, Y. Muroya, T. Sasaki, and K. Kobayashi, “Isolator-free 2.5-Gb/s 80-km transmission by directly modulated λ/8 phase-shifted DFB-LDs under negative feedback effect of mirror loss,” IEEE Photon. Technol. Lett.13(3), 245–247 (2001).
[CrossRef]

M. Okai, N. Chinone, H. Taira, and T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photon. Technol. Lett.1(8), 200–201 (1989).
[CrossRef]

G. P. Li, T. Makino, A. Sarangan, and W. Huang, “16-Wavelength gain-coupled DFB laser array with fine tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Y. Suematsu and K. Iga, “Semiconductor lasers in photonics,” J. Lightwave Technol.26(9), 1132–1144 (2008).
[CrossRef]

T. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996).
[CrossRef]

Microelectron. Eng. (1)

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1-4), 331–350 (1996).
[CrossRef]

Opt. Express (2)

Other (1)

J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, “Monolithically integrated 30-wavelength DFB laser array,” Proc. of SPIE-OSA-IEEE 7631, 763104–1-763104–6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the grating structure with equivalent 2π/3 phase-shifts at three different positions.

Fig. 2
Fig. 2

(a) Light intensity distributions along the laser cavities with the two different structures at the same bias current of 40mA, (b) the corresponding simulated lasing spectra of the two DFB lasers.

Fig. 3
Fig. 3

The microscope images of (a) the sampling photomask and (b) the sampled grating, (c) the cross-section of the fabricated DFB laser.

Fig. 4
Fig. 4

The measured P-I curves under different surrounding temperatures.

Fig. 5
Fig. 5

(a) The measured lasing spectra of the fabricated laser when bias current is 150mA and surrounding temperature is from 25°C to 55°C, (b) the corresponding SMSRs.

Fig. 6
Fig. 6

The measured lasing wavelengths versus the temperature at the bias currents of 70mA and 110mA.

Fig. 7
Fig. 7

The lasing spectra of the two fabricated equivalent 3PS DFB semiconductor laser with different sampling period in the same laser bar.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δn( z )={ 1 2 Δ n s m F m exp[ j( 2π z Λ 0 +2mπ z P ) ]+c.c z< z 0 1 2 Δ n s m F m exp( j2mπ ΔP P )exp[ j( 2π z Λ 0 +2mπ z P ) ]+c.c z z 0
Λ 1 = Λ 0 P P Λ 0
Δ Λ 0 = L+ΔL L Λ 0 Λ 0 = ΔL L Λ 0
Δ Λ 1 = ( P P Λ 0 ) 2 Δ Λ 0 = ( P P Λ 0 ) 2 ΔL L Λ 0
Δ Λ 1 = 1 ( P Λ 0 1 ) 2 Δp

Metrics