Abstract

Beam steering at high speed and high power is demonstrated from a 6-element optical phased array using coherent beam combining (CBC) techniques. The steering speed, defined as the inverse of the time to required to sweep the beam across the steering range, is 40 MHz and the total power is 396 mW. The measured central lobe FWHM width is 565 μrad. High on-axis intensity is maintained periodically by phase-locking the array via a stochastic-parallel-gradient-descent (SPGD) algorithm. A master-oscillator-power-amplifier (MOPA) configuration is used where the amplifier array elements are semiconductor slab-coupled-optical-waveguide-amplifiers (SCOWAs). The beam steering is achieved by LiNbO3 phase modulators; the phase-locking occurs by current adjustment of the SCOWAs. The system can be readily scaled to GHz steering speed and multiwatt-class output.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
    [CrossRef]
  2. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
    [CrossRef]
  3. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express18, 13655–13660 (2010).
    [CrossRef] [PubMed]
  4. K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
    [CrossRef]
  5. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express19, 21595–21604 (2011).
    [CrossRef] [PubMed]
  6. Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).
  7. M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
    [CrossRef]
  8. J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
    [CrossRef]
  9. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wavefront phase-distortion correction,” J. Opt. Soc. Am. A15, 2745–2758 (1998).
    [CrossRef]
  10. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
    [CrossRef]
  11. T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron.15, 291–293 (2009).
    [CrossRef]

2011

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express19, 21595–21604 (2011).
[CrossRef] [PubMed]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

2010

2009

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron.15, 291–293 (2009).
[CrossRef]

2008

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

2007

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

2003

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

1998

Baets, R.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
[CrossRef]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express18, 13655–13660 (2010).
[CrossRef] [PubMed]

Bailey, R. J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Bogaerts, W.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
[CrossRef]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Bovington, J. T.

Bowers, J. E.

Chen, R. T.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

Choi, J. M.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Coldren, L. A.

Donnelly, J. P.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Doylend, J. K.

Erkmen, B. I.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Fabian, R.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron.15, 291–293 (2009).
[CrossRef]

Farr, W. H.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Goodhue, W. D.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Harris, C. T.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Heck, M. J. R.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Higgs, C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Hosseini, A.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

Huang, R. K.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Jarrahi, M.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

Kansky, J. E.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Kwong, D.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

Lawrence, R. C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Lee, T. H.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Miller, D. A. B.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

Missaggia, L. J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Mull, D. E.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Murphy, D. V.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Pease, W.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

Peters, J. D.

Plant, J. J.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Rogier, H.

Satyan, N.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Shaw, S. E. J.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Sivokon, V. P.

Turner, G. W.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Van Acoleyen, K.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
[CrossRef]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express18, 13655–13660 (2010).
[CrossRef] [PubMed]

Vilenchik, Y.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Vorontsov, M. A.

Walpole, J. N.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Yariv, A.

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Yu, C. X.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Zhang, Y.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

Am. Vac. Soc.

M. Jarrahi, R. Fabian, W. Pease, D. A. B. Miller, and T. H. Lee, “High-speed optical beam-steering based on phase-arrayed waveguides,” Am. Vac. Soc.26, 2124–2126 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett.99, 051104 (2011).
[CrossRef]

IEEE J. Quantum Electron.

J. P. Donnelly, R. K. Huang, J. N. Walpole, L. J. Missaggia, C. T. Harris, J. J. Plant, R. J. Bailey, D. E. Mull, W. D. Goodhue, and G. W. Turner, “AlGaAs-InGaAs slab-coupled optical waveguide lasers,” IEEE J. Quantum Electron.39, 289–298 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, “The effect of amplitude (power) variations on beam combining efficiency for phased arrays,” IEEE J. Sel. Top. Quantum Electron.15, 291–293 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-dimensional dispersive on-chip beam scanner fabricated on silicon-on-insulator,” IEEE Photon. Technol. Lett.23, 1270–1272 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Proc. IEEE

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE97, 1078–1096 (2009).
[CrossRef]

Proc. SPIE

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Uncooperative target-in-the-loop performance with backscattered speckle-field effects,” Proc. SPIE6306, 63060G (2007).
[CrossRef]

Other

Y. Vilenchik, B. I. Erkmen, N. Satyan, A. Yariv, W. H. Farr, and J. M. Choi, “Optical phase lock loop based phased array transmitter for optical communications,” The Interplanetary Network Progress Report 42–184, C (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) System schematic. (b) Photo of optical assembly. (c) Measured power emitted by SCOWA array.

Fig. 2.
Fig. 2.

(a) Phase-lock convergence trace. (b) Dephasing trace (SPGD is turned off at t = 0). (c) Illustration of toggling modality. (d) Table describing on-off operation of components during steer and phase-lock toggling cycles.

Fig. 3.
Fig. 3.

(a) Electronics for driving the phase modulators (PM) for low frequency (LF) steering. (b) RF electronics for driving the phase modulators for RF steering. (c) Far-field diagnostics setup for RF steering.

Fig. 4.
Fig. 4.

Measured profiles of the central portion of the beam: (a) during phase synchronization and (b) during low frequency steering.

Fig. 5.
Fig. 5.

High-speed detector measurements at RF steering. (a) The central lobe is deflected at 40 MHz steering speed by oscillating the steer angle, Δϕ. (b) These plots show the intensity on the detector versus steer angle as the central lobe transits through one steering period for different detector positions, Δϕdet, along the steering direction.

Tables (1)

Tables Icon

Table 1: Parameters for experimental system.

Metrics