Abstract

Transmission and dispersion relation of THz waves in two-dimensional photonic crystal (PC) composed of metal rods are studied by using finite-difference time-domain simulation and THz time-domain spectroscopy measurement. The PC is embedded in a parallel metal plate waveguide with an air gap between the PC and one of the plates. The photonic-band-gap well-defined at small air gap narrows systematically with opening the air gap and disappears when the air gap is 2 ∼ 3 times the rod height, where the two-dimensional nature of PC is destroyed. The mechanical tunability of photonic band structure would be useful in functional THz device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  2. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quant. Electron.34, 89–134 (2010).
    [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira1, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13, 2678–2687 (2005).
    [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
    [CrossRef] [PubMed]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
    [CrossRef]
  6. S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
    [CrossRef]
  7. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008).
    [CrossRef]
  8. G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
    [CrossRef]
  9. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009).
    [CrossRef]
  10. A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33, 348–350 (2008).
    [CrossRef] [PubMed]
  11. H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt.48, 6934–6939 (2009).
    [CrossRef] [PubMed]
  12. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
    [CrossRef]
  13. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32, 680–682 (2007).
    [CrossRef] [PubMed]
  14. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26, 846–848 (2001).
    [CrossRef]
  15. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005).
    [CrossRef]
  16. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20, 6116–6123 (2012).
    [CrossRef] [PubMed]
  17. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
    [CrossRef]
  18. H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
    [CrossRef]
  19. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982–7986 (1995).
    [CrossRef]
  20. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10, 322–327 (1993).
    [CrossRef]
  21. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18, 1289–1295 (2010).
    [CrossRef] [PubMed]

2012 (1)

2010 (2)

2009 (3)

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009).
[CrossRef]

H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt.48, 6934–6939 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33, 348–350 (2008).
[CrossRef] [PubMed]

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008).
[CrossRef]

2007 (2)

2006 (1)

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

2005 (2)

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

2001 (2)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26, 846–848 (2001).
[CrossRef]

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

1995 (1)

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982–7986 (1995).
[CrossRef]

1994 (1)

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

1993 (1)

Aosaki, K.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Arjavalingam, G.

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Bingham, A.

A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33, 348–350 (2008).
[CrossRef] [PubMed]

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005).
[CrossRef]

Brommer, K. D.

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Estacio, E.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Fekete, L.

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Grischkowsky, D.

A. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett.33, 348–350 (2008).
[CrossRef] [PubMed]

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26, 846–848 (2001).
[CrossRef]

Hangyo, M.

Haus, J. W.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Ho, K. M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

Inoue, K.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Itoh, H.

Jeon, T.-I.

Ji, Y. B.

Joannopoulos, J. D.

Kadlec, F.

Kawai, N.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Kee, C.-S.

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Kim, D.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S.-H.

Kim, T. G.

Kira1, G.

Kishimoto, E.

Kitahara, H.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Kokuhata, T.

Kondo, H.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Koshiba, S.

Kroll, N.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

Kuramochi, E.

Kužel, P.

Lee, E. S.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Li, S.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Li, Y.-X.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Linfield, E. H.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Ling, W.-W.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Meade, R. D.

Mendis, R.

Mitsugi, S.

Miyagawa, H.

Murakami, H.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Nair, R. V.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quant. Electron.34, 89–134 (2010).
[CrossRef]

Nakanishi, S.

Nemec, H.

Notomi, M.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Ono, S.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Park, G.-S.

Pobre, R.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Ponseca, C.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Quema, A.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Quiroga, R.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Rappe, A. M.

Reyes, G. D. L.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Robertson, W. M.

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Sakane, Y.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Sakoda, K.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982–7986 (1995).
[CrossRef]

Sarukura, N.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Sato, H.

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009).
[CrossRef]

Shinya, A.

Shirai, H.

Sigalas, M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

Smith, D. R.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

So, J.-K.

Song, Y.-Q.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

Takeda, M.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Tanabe, T.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

Tsumura, N.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Tsurumachi, N.

Vijaya, R.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quant. Electron.34, 89–134 (2010).
[CrossRef]

Wen, Q.-Y.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Yuan, Z.

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

Zhang, H.-W.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Zhao, Y.

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, W.-W. Ling, and Y.-X. Li, “Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime,” Appl. Phys. B95, 745–749 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

G. D. L. Reyes, A. Quema, C. Ponseca, R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, “Low-loss single-mode terahertz waveguiding using Cytop,” Appl. Phys. Lett.89, 211119 (2006).
[CrossRef]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett.94, 154104 (2009).
[CrossRef]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85, 5173–5175 (2004).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87, 051101 (2005).
[CrossRef]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,” Appl. Phys. Lett.65, 645–647 (1994).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett.18, 428–430 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

Nature (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

H. Kitahara, N. Tsumura, H. Kondo, M. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sakoda, and K. Inoue, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B64, 045202 (2001).
[CrossRef]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982–7986 (1995).
[CrossRef]

Prog. Quant. Electron. (1)

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quant. Electron.34, 89–134 (2010).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284, 1819–1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic view of 2D metallic PC embedded in PPWG. The first Brillouin zone of square lattice PC is also shown.

Fig. 2
Fig. 2

Transmission spectra of PC with 30 μm air gap.

Fig. 3
Fig. 3

Distributions of Ez in PC with 30 μm air gap. Ez pattern of PB1 at 0.3 THz is shown in (a) (at the center of air gap) and (b) (at the center of rod region). The Ez pattern of PB2 at 1.5 THz is shown in (c) (at the center of air gap) and (d) (at the center of rod region).

Fig. 4
Fig. 4

PBG maps at air gap width of 5, 10, 30 and 50 μm.

Fig. 5
Fig. 5

Contour maps of transmission spectra along (a) Γ-X and (b) Γ-M directions. The a and R are 120 μm and 30 μm, respectively.

Fig. 6
Fig. 6

Transmission spectra of PC and corrugated PPWG with 10 μm air gap along (a) Γ-X and (b) Γ-M directions, and those with 150 μm air gap along (c) Γ-X and (d) Γ-M directions. The cross-sectional views of device are drawn in the insets.

Fig. 7
Fig. 7

(a) Scanning electron microscopy image of PC rods. (b) Photograph of fabricated PC. (c) Schematic set up of THz-TDS measurement. The PC device attached by input metal coupler and top view of PCs are also depicted.

Fig. 8
Fig. 8

Experimental contour maps of transmission spectra along (a) Γ-X and (b) Γ-M directions.

Fig. 9
Fig. 9

Dispersion curves of photonic bands with air gap of (a) 110 μm (b) 70 μm (c) 30 μm and (d) 10 μm. The light lines are also plotted.

Fig. 10
Fig. 10

Experimental THz wave form in PC with 20 μm air gap for (a) Γ-X and (c) Γ-M directions. The Fourier spectra of fast and slow components are shown in (b) Γ-X and (d) Γ-M.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = 20 log | E P C | | E ref | ,
k P C L ϕ P C ϕ P P W G + ω c L .

Metrics