Abstract

Using full vector finite element method and super-mode theory, we analyzed the feasibility to fabricate micro-fiber-coupler-based optical polarizer. Our theoretical analysis showed that there exist a set of optimal pairs of two coupler geometric parameters, i.e. the coupling length and the micro-fiber diameter of the coupler, that can result in high performance polarizers. Experimentally, we fabricated three such coupler-based polarizers using the dual fiber drawing technique and characterized their performance. Our experimental measurement results confirmed our theoretical prediction in several aspects. When the diameter of the coupler-forming micro-fiber is relatively small (~3.5μm), the degree of polarization (DOP) of the fabricated polarizer was found relatively low (~50%) even over some coupling length range. However, when the diameter of the coupler-forming micro-fiber is larger (about 5μm to 9μm), a much higher DOP (>91.4%) and better linear polarization extinction ratio (LPER) of ~60dB could be achieved. The measured geometric parameters of two polarizer samples that showed high polarizing performance agreed very well with our theoretical values. Furthermore, we also demonstrated that such a coupler-based polarizer can be used as an optical filter as well. The filter exhibited an extinction ratio as high as 20dB at the center wavelength and the full width at half maximum (FWHM) was 10nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express16(14), 10815–10822 (2008).
    [CrossRef] [PubMed]
  3. Y. Wang, H. Zhu, and B. Li, “Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires,” IEEE Photon. Technol. Lett.21(16), 1115–1117 (2009).
    [CrossRef]
  4. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett.33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  5. X. Guo and L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express16(19), 14429–14434 (2008).
    [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment and application,” J. Lightwave Technol.24(1), 242–250 (2006).
    [CrossRef]
  7. L. Xiao and T. A. Birks, “High finesse microfiber knot resonators made from double-ended tapered fibers,” Opt. Lett.36(7), 1098–1100 (2011).
    [CrossRef] [PubMed]
  8. Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, and J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express19(15), 14217–14222 (2011).
    [CrossRef] [PubMed]
  9. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett.33(21), 2565–2567 (2008).
    [PubMed]
  10. J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express17(6), 4640–4645 (2009).
    [CrossRef] [PubMed]
  11. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  12. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010).
    [CrossRef]
  13. M. Belal, Z. Q. Song, Y. Jung, G. Brambilla, and T. Newson, “An interferometric current sensor based on optical fiber micro wires,” Opt. Express18(19), 19951–19956 (2010).
    [CrossRef] [PubMed]
  14. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett.37(1), 67–69 (2012).
    [CrossRef] [PubMed]
  15. W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett.101(24), 243601 (2008).
    [CrossRef] [PubMed]
  16. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt.46(9), 1429–1434 (2007).
    [CrossRef] [PubMed]
  17. X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett.8(9), 2839–2843 (2008).
    [CrossRef] [PubMed]
  18. Z. Hong, X. Li, L. Zhou, X. Shen, J. Shen, S. Li, and J. Chen, “Coupling characteristics between two conical micro/nano fibers: simulation and experiment,” Opt. Express19(5), 3854–3861 (2011).
    [CrossRef] [PubMed]
  19. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006).
    [CrossRef] [PubMed]
  20. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett.32(9), 1035–1037 (2007).
    [CrossRef] [PubMed]
  21. H. F. Xuan, W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M. H. Chen, “Hollow-core photonic bandgap fiber polarizer,” Opt. Lett.33(8), 845–847 (2008).
    [CrossRef] [PubMed]
  22. W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett.36(16), 3296–3298 (2011).
    [CrossRef] [PubMed]
  23. S. Ma and S. Tseng, “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol.15(8), 1554–1558 (1997).
    [CrossRef]
  24. A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
    [CrossRef]
  25. T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
    [CrossRef]
  26. K. Okamoto, Fundamental of Optical Waveguides (Elsevier Academic Press, 2006), Chap. 4.
  27. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt.25(23), 4421–4425 (1986).
    [CrossRef] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Chap. 19.

2012

2011

2010

2009

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express17(6), 4640–4645 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Zhu, and B. Li, “Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires,” IEEE Photon. Technol. Lett.21(16), 1115–1117 (2009).
[CrossRef]

2008

2007

2006

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1998

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

1997

S. Ma and S. Tseng, “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol.15(8), 1554–1558 (1997).
[CrossRef]

1986

1982

T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
[CrossRef]

Adnreev, A.

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Belal, M.

Birks, T. A.

Bourbonnais, R.

Brambilla, G.

Bures, J.

Chan, C. C.

Chen, J.

Chen, M. H.

Chen, Y.

Chen, Z.

Cui, Y.

Danesh, P.

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

DiGiovanni, D. J.

Dulashko, Y.

Feng, R.

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express17(6), 4640–4645 (2009).
[CrossRef] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett.101(24), 243601 (2008).
[CrossRef] [PubMed]

Fini, J. M.

Fukuda, H.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gonthier, F.

Gu, F.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Guo, X.

Hale, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hong, Z.

Hosaka, T.

T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
[CrossRef]

Hsiao, V. K. S.

Huang, K.

Itabashi, S.

Jin, W.

Ju, J.

Jung, Y.

Karakoleva, E.

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

Lacroix, S.

Li, B.

Y. Wang, H. Zhu, and B. Li, “Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires,” IEEE Photon. Technol. Lett.21(16), 1115–1117 (2009).
[CrossRef]

X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express16(14), 10815–10822 (2008).
[CrossRef] [PubMed]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett.8(9), 2839–2843 (2008).
[CrossRef] [PubMed]

Li, S.

Li, X.

Li, Y.

Li, Z.

Liang, R.

Liao, Y. B.

Liu, D.

Liu, S.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ma, S.

S. Ma and S. Tseng, “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol.15(8), 1554–1558 (1997).
[CrossRef]

Ma, Z.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Newson, T.

Noda, J.

T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
[CrossRef]

Pantchev, B.

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

Qian, W.

She, W.

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express17(6), 4640–4645 (2009).
[CrossRef] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett.101(24), 243601 (2008).
[CrossRef] [PubMed]

Shen, J.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, X.

Shinojima, H.

Shum, P. P.

Song, Z. Q.

Sumetsky, M.

Sun, Q.

Tong, L.

Tong, L. M.

Tseng, S.

S. Ma and S. Tseng, “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol.15(8), 1554–1558 (1997).
[CrossRef]

Tsuchizawa, T.

Wang, D. N.

Wang, G.

Wang, Y.

Wang, Y. P.

Watanabe, T.

Wo, J.

Xiao, L.

Xing, X.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett.8(9), 2839–2843 (2008).
[CrossRef] [PubMed]

X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express16(14), 10815–10822 (2008).
[CrossRef] [PubMed]

Xuan, H. F.

Yamada, K.

Yang, Q.

Yang, S.

Yin, X.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Yu, J.

Zafirova, B.

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

Zhang, J.

Zhang, L.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zhang, M.

Zhao, C. L.

Zhou, L.

Zhu, H.

Y. Wang, H. Zhu, and B. Li, “Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires,” IEEE Photon. Technol. Lett.21(16), 1115–1117 (2009).
[CrossRef]

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett.8(9), 2839–2843 (2008).
[CrossRef] [PubMed]

Appl. Opt.

IEEE Photon. Technol. Lett.

Y. Wang, H. Zhu, and B. Li, “Cascaded Mach-Zehnder interferometers assembled by submicrometer PTT wires,” IEEE Photon. Technol. Lett.21(16), 1115–1117 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

T. Hosaka, K. Okamoto, and J. Noda, “Single-mode fiber-type polarizer,” IEEE Trans. Microw. Theory Tech.30(10), 1557–1560 (1982).
[CrossRef]

J. Lightwave Technol.

S. Ma and S. Tseng, “High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technol.15(8), 1554–1558 (1997).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment and application,” J. Lightwave Technol.24(1), 242–250 (2006).
[CrossRef]

Nano Lett.

X. Xing, H. Zhu, Y. Wang, and B. Li, “Ultracompact photonic coupling splitters twisted by PTT nanowires,” Nano Lett.8(9), 2839–2843 (2008).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Fiber Technol.

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol.16(6), 331–342 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

W. She, J. Yu, and R. Feng, “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” Phys. Rev. Lett.101(24), 243601 (2008).
[CrossRef] [PubMed]

Thin Solid Films

A. Adnreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films330(2), 150–156 (1998).
[CrossRef]

Other

K. Okamoto, Fundamental of Optical Waveguides (Elsevier Academic Press, 2006), Chap. 4.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), Chap. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of super-mode theory of waveguide directional coupling

Fig. 2
Fig. 2

Field profiles and local polarization directions of TE and TM super-modes in coupling region, where two identical micro-fibers have 3μm diameter and are clingy together. Figures (a)-(d) are field profiles of TM odd, TM even, TE odd, and TE even modes, respectively.

Fig. 3
Fig. 3

Variations of four super-mode effective refractive indexes with respect to micro-fiber diameter and variations of TE(TM) beat length with respect to the diameter of two identical micro-fibers.

Fig. 4
Fig. 4

(a) Optimal geometrical parameters at 1550nm for best polarizing performance. A pair of the optimal parameters, i.e. micro-fiber diameter D and best coupling length LCbest, corresponds to a pair of integer number (m,n) and is denoted by one hollow square,(D, LCbest). Each group of hollow squares for a different m number form a curve corresponding to a given n number (n = 1,3,5… from bottom up); (b) enlarged image of ‘zone a’; (c) enlarged image of ‘zone b’

Fig. 5
Fig. 5

Schematic of experimental and fabrication setup

Fig. 6
Fig. 6

Coupling region micrographs of three coupler-based polarizer samples. (a)-(c) correspond to the first, second, third polarizer samples. Their measured geometric parameter, i.e. micro-fiber diameter and coupling length, are: 3.5μm and 27.8mm for the first sample, and 8.6μm and 10.43mm for the second sample, and 5.1μm and 7.87mm for the third sample.

Fig. 7
Fig. 7

Output light DOP of output light from first polarizer sample as a function of overlapping length

Fig. 8
Fig. 8

The cross-output-port DOP (a) and LPER (b) dependence of the second polarizer on wavelength in optical communication band. In (a) and (b), the experimental measurement at the bar-output-port and at the cross-output-port are plotted by solid and dot line, respectively. The dashed line in (a) represents DOP of the input light at different wavelengths.

Fig. 9
Fig. 9

(a) Cross-output-port DOP and LPER spectrums of the third sample coupler. The four LPER peaks located at 1542nm, 1556nm, 1578.5nm and 1596nm are with a value 11.6dB, 60dB, 40dB and 21dB, from left to right respectively. (b) Cross-output-port transmission spectrums with an additional in-line rotatable polarizer which were rotated at angle 0° and at angle 90 °.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L i B (λ)=2π/[β (λ) i,even β (λ) i,odd ]=λ/[(n (λ) eff i,even n (λ) eff i,odd )],
L C =m L TE B /2 =(m+n) L TM B /2 ( m=1,2,3...... n=1,3,5,...... ) ,
Δ L c Max = L TM B 5π .
P bar = P TE cos 2 (π L c / L TE B )+ P TM cos 2 (π L c / L TM B )
P cross = P TE sin 2 (π L c / L TE B )+ P TM sin 2 (π L c / L TM B ),
LPE R bar =10lg| cos 2 (π L c / L TE B ) cos 2 (π L c / L TM B ) | LPE R cross =10lg| sin 2 (π L c / L TE B ) sin 2 (π L c / L TM B ) |
LPE R bar =10lg| cos 2 (mπ/2+πΔ L c / L TE ) cos 2 ((m+n)π/2+πΔ L c / L TM ) |20 LPE R cross =10lg| sin 2 (mπ/2+πΔ L c / L TE ) sin 2 ((m+n)π/2+πΔ L c / L TM ) |20
Δ L c max = 10π/ L TM +2 ( 5π/ L TM ) 2 + (π/ L TE ) 2 (π/ L TE ) 2 L TM 5π ,
Δ L c max = 10π/ L TE +2 ( 5π/ L TE ) 2 + (π/ L TM ) 2 (π/ L TM ) 2 L TE 5π .

Metrics