Abstract

Intermodulation distortions are generated by Mach-Zehnder modulators when they are driven by signals with certain bandwidth in microwave (MW) and millimeter-wave (MMW) radio-over-fiber (ROF) links. The optical spectral structure of the distorted optical signal is investigated. A strategy to improve the dynamic range of MW and MMW ROF links directly in the optical domain is proposed and experimentally demonstrated. Based on optical spectrum processing, the third-order intermodulation distortions (IMD3s) of the generated signals are suppressed. A 107.2dB∙Hz2/3 spurious-free dynamic range (SFDR) of the MW/MMW ROF link is obtained, which is improved more than 20dB. A 16QAM signal is transmitted in the system and the error vector magnitude (EVM) is measured with and without the proposed technique. The influence of the nonlinearity of modulators on EVM is almost completely eliminated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. J. Koonen and M. G. Í. Larrodé, “Radio-Over-MMF Techniques-Part II: Microwave to Millimeter-Wave Systems,” J. Lightwave Technol. 26(15), 2396–2408 (2008).
    [CrossRef]
  2. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012).
    [CrossRef] [PubMed]
  3. J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
    [CrossRef]
  4. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
    [CrossRef]
  5. C. Lim, A. T. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, “Intermodulation Distortion Improvement for Fiber–Radio Applications Incorporating OSSB+C Modulation in an Optical Integrated-Access Environment,” J. Lightwave Technol. 25(6), 1602–1612 (2007).
    [CrossRef]
  6. B. Masella, B. Hraimel, and X. Zhang, “Enhanced Spurious-Free Dynamic Range Using Mixed Polarization in Optical Single Sideband Mach-Zehnder Modulator,” J. Lightwave Technol. 27(15), 3034–3041 (2009).
    [CrossRef]
  7. S. K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express 19(8), 7865–7871 (2011).
    [CrossRef] [PubMed]
  8. J. Chou, O. Boyraz, and B. Jalali, “Adaptive optical post distortion linearization,” Opt. Express 13(15), 5711–5718 (2005).
    [CrossRef] [PubMed]
  9. A. M. Weiner, Ultrafast Optics (Wiley, 2009).

2012 (1)

2011 (1)

2010 (2)

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2005 (1)

Accard, A.

Boyraz, O.

Carpintero, G.

Chou, J.

Dalton, L. R.

Fetterman, H. R.

Fice, M. J.

Gomes, N. J.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Hraimel, B.

Jalali, B.

James, J.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Kim, S. K.

Koonen, A. M. J.

Larrodé, M. G. Í.

Lee, K.-L.

Lelarge, F.

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

Liang, X.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Lim, C.

Liu, W.

Masella, B.

Nirmalathas, A. T.

Nkansah, A.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

Novak, D.

Pei, Q.

Renaud, C. C.

Rouvalis, E.

Seeds, A. J.

Shen, P.

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

van Dijk, F.

Waterhouse, R.

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

Zhang, X.

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 22(24), 1775–1777 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. James, P. Shen, A. Nkansah, X. Liang, and N. J. Gomes, “Nonlinearity and Noise Effects in Multi-Level Signal Millimeter-Wave Over Fiber Transmission Using Single and Dual Wavelength Modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3189–3198 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Other (1)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of classic MMW ROF link with optical up-conversion. PD: photo detector.

Fig. 2
Fig. 2

(a) Output optical spectrum of MZM; (b) 4 desired sidebands in linearized MW/MMW ROF link; (c) frequency components of the desired sidebands.

Fig. 3
Fig. 3

Spectrum evolution without (a) and with (b) optical spectrum processing.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup.

Fig. 5
Fig. 5

Measured SFDR without (dashed line) and with (solid line) optical spectrum processing.

Fig. 6
Fig. 6

Measured EVM performance of the VSG (dash-dot line), ROF link without processing (dashed line), and ROF link with processing (solid line) and constellation diagram for 16-QAM at the input power of 21dBm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E out (t)= 1 2 E 0 i=1 2 exp(j ω i t) {exp[j π 4 +j π V in 2 V π (sin Ω 1 t+sin Ω 2 t)] +exp[j π 4 j π V in 2 V π (sin Ω 1 t+sin Ω 2 t)]}
E out (t)= 1 2 E 0 i=1 2 p= q= [exp(j π 4 )+ (1) p+q exp(j π 4 )] J p (m) J q (m)exp(j ω i t+jp Ω 1 t+jq Ω 2 t)
I elec (t)= I 0 +( I 101 + I 112 )(sin Ω 1 t+sin Ω 2 t) +(I ' 101 +I ' 112 )[sin( ω 2 ω 1 + Ω 1 )t+sin( ω 2 ω 1 + Ω 2 )t] +( I 301 + I 312 ){sin[(2 Ω 1 Ω 2 )t]+sin[(2 Ω 2 Ω 1 )t]} +(I ' 301 +I ' 312 ){sin[( ω 2 ω 1 +2 Ω 1 Ω 2 )t] +sin[( ω 2 ω 1 +2 Ω 2 Ω 1 )t]}
I elec (t)= I 0 +( I 101 + I 112 )[sin Ω 1 t+sin Ω 2 t +sin( ω 2 ω 1 + Ω 1 )t+sin( ω 2 ω 1 + Ω 2 )t] +( I 301 + I 312 ){sin[(2 Ω 1 Ω 2 )t]+sin[(2 Ω 2 Ω 1 )t] +sin[( ω 2 ω 1 +2 Ω 1 Ω 2 )t]+sin[( ω 2 ω 1 +2 Ω 2 Ω 1 )t]}.

Metrics