Abstract

A simple and controllable method is proposed to fabricate suspended three-dimensional carbon microelectromechanical systems (C-MEMS) structures by tailoring diffraction-induced light distribution in photolithography process. An optical model is set up and the corresponding affecting parameters are analyzed to interpret and predict the formation of suspended structures based on Fresnel diffraction theory. It is identified that mask pattern dimensions, gap distance between the photomask and photoresist, and the exposure time are critical to the final suspended structures, which have also been verified through experimental demonstrations. The fabricated biocompatible suspended C-MEMS structures could find wide applications in electrochemical and biological areas.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
    [CrossRef]
  2. B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
    [CrossRef]
  3. D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
    [CrossRef] [PubMed]
  4. C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
    [CrossRef]
  5. W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
    [CrossRef]
  6. H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
    [CrossRef] [PubMed]
  7. A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
    [CrossRef]
  8. B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolith. MEMS MOEMS. 6, 023006 (2007).
  9. W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
    [CrossRef]
  10. Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
    [CrossRef]
  11. R. Yang and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators B Chem. 110(2), 279–288 (2005).
    [CrossRef]
  12. Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
    [CrossRef]
  13. Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
    [CrossRef]
  14. K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
    [CrossRef]
  15. K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
    [CrossRef]
  16. C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
    [CrossRef]
  17. N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003), Chap. 1, 2, 7, 8.
  19. M. Bass and V. N. Mahajan, Handbook of Optics (McGraw-Hill, 2010), Volume I, Chap. 1–3.
  20. M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
    [CrossRef]

2011 (1)

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

2010 (2)

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

2009 (1)

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

2008 (2)

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
[CrossRef]

2007 (2)

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolith. MEMS MOEMS. 6, 023006 (2007).

2006 (3)

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
[CrossRef]

2005 (3)

R. Yang and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators B Chem. 110(2), 279–288 (2005).
[CrossRef]

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

2004 (1)

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

2002 (2)

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

1999 (1)

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Arscott, S.

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

Bechtold, K.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Beidaghi, M.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Brozik, S. M.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Brueck, S. R. J.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Buchaillot, L.

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

Burckel, D. B.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Camart, J. C.

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

Campo, A.

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

Chen, W.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Cheng, Y.

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Chuang, Y. J.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Dai, H. J.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Dunn, B.

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Erdmann, A.

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolith. MEMS MOEMS. 6, 023006 (2007).

Franklin, N. R.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Gaudet, M.

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

Gong, J.

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

Greiner, C.

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

Gruetzner, G.

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Javey, A.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Jia, G. Y.

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Kang, W. J.

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

Katepalli, H.

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

Kim, G. D.

K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
[CrossRef]

Kim, G. M.

K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
[CrossRef]

Kopetz, S.

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

Kulinsky, L.

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

Kumari, L.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Li, W. Z.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Lin, C. Y.

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Lin, W. K.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Liu, S. Y.

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

Loechel, B.

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Madou, M.

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
[CrossRef]

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Malladi, K.

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
[CrossRef]

Meliorisz, B.

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolith. MEMS MOEMS. 6, 023006 (2007).

Neyer, A.

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

Nie, L.

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

No, K. Y.

K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
[CrossRef]

Park, B. Y.

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

Penmatsa, V.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

Polsky, R.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Rabe, E.

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

Raub, A. K.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Sharma, A.

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

Sharma, C. S.

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

Shi, T. L.

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

Shim, M.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Song, M.

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

Taherabadi, L.

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Tang, Z. R.

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

Tombler, T. W.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Tseng, F. G.

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Wang, C. L.

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
[CrossRef]

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Wang, Q.

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

Wang, W. J.

R. Yang and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators B Chem. 110(2), 279–288 (2005).
[CrossRef]

Washburn, C. M.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Wei, D. H.

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

Wheeler, D. R.

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Xu, H.

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

Yang, R.

R. Yang and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators B Chem. 110(2), 279–288 (2005).
[CrossRef]

Yeh, Y.

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

Zoval, J.

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Appl. Phys. Lett. 81(5), 913–915 (2002).
[CrossRef]

M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Appl. Phys. Lett. 88(2), 024107 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

H. Xu, K. Malladi, C. L. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosens. Bioelectron. 23(11), 1637–1644 (2008).
[CrossRef] [PubMed]

Carbon (2)

K. Malladi, C. L. Wang, and M. Madou, “Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis,” Carbon 44(13), 2602–2607 (2006).
[CrossRef]

C. S. Sharma, H. Katepalli, A. Sharma, and M. Madou, “Fabrication and electrical conductivity of suspended carbon nanofiber arrays,” Carbon 49(5), 1727–1732 (2011).
[CrossRef]

Electrochem. Solid-State Lett. (1)

C. L. Wang, L. Taherabadi, G. Y. Jia, M. Madou, Y. Yeh, and B. Dunn, “C-MEMS for the manufacture of 3D microbatteries,” Electrochem. Solid-State Lett. 7(11), A435–A438 (2004).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, “Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors,” IEEE Trans. Nanotechnol. 9(6), 734–740 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

B. Y. Park, L. Taherabadi, C. L. Wang, J. Zoval, and M. Madou, “Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media,” J. Electrochem. Soc. 152(12), J136–J143 (2005).
[CrossRef]

J. Mech. Sci. Technol. (1)

K. Y. No, G. D. Kim, and G. M. Kim, “Fabrication of suspended micro-structures using diffsuser lithography on negative photoresist,” J. Mech. Sci. Technol. 22(9), 1765–1771 (2008).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS. (1)

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolith. MEMS MOEMS. 6, 023006 (2007).

J. Microelectromech. Syst. (2)

C. L. Wang, G. Y. Jia, L. Taherabadi, and M. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” J. Microelectromech. Syst. 14(2), 348–358 (2005).
[CrossRef]

Y. Cheng, C. Y. Lin, D. H. Wei, B. Loechel, and G. Gruetzner, “Wall profile of thick photoresist generated via contact printing,” J. Microelectromech. Syst. 8(1), 18–26 (1999).
[CrossRef]

J. Micromech. Microeng. (2)

A. Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng. 17(6), R81–R95 (2007).
[CrossRef]

W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” J. Micromech. Microeng. 16(4), 821–831 (2006).
[CrossRef]

Microsyst. Technol. (1)

Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8(4-5), 308–313 (2002).
[CrossRef]

Sens. Actuators B Chem. (1)

R. Yang and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sens. Actuators B Chem. 110(2), 279–288 (2005).
[CrossRef]

Small (1)

D. B. Burckel, C. M. Washburn, A. K. Raub, S. R. J. Brueck, D. R. Wheeler, S. M. Brozik, and R. Polsky, “Lithographically defined porous carbon electrodes,” Small 5(24), 2792–2796 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

Z. R. Tang, T. L. Shi, J. Gong, L. Nie, and S. Y. Liu, “An optimized process for fabrication of high-aspect-ratio photoresist-derived carbon microelectrode array on silicon substrate,” Thin Solid Films 518(10), 2701–2706 (2010).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2003), Chap. 1, 2, 7, 8.

M. Bass and V. N. Mahajan, Handbook of Optics (McGraw-Hill, 2010), Volume I, Chap. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the photomask and modeling of light transmision in lithography: (a). Design of the mask pattern; (b). Schematics of the lithography process; (c). 3D coordinates in light transmmision modeling.

Fig. 2
Fig. 2

(a). Typical simulation result of 3D light intensity distribution patterns on the top surface of photoresist with the air gap distance of 300 μm. (b). Top view of Fig. 2(a) with color indicating the light intensity distribution on the top surface of photoresist.

Fig. 3
Fig. 3

(a). Simulated light intensity distribution patterns on the top surface of photoresist depending on air gap; (b). Partial enlargement of Fig. 3(a) with the comparision of average intensity between two mask edges.

Fig. 4
Fig. 4

The average light intensity between two neighboring mask edges depending on edge-to-edge distance at different air gaps and a fixed diameter a.

Fig. 5
Fig. 5

SEM photographs of SU-8 patterns formed after exposure time of 120 s under various air gap z0: (a) hard contact; z0 = 0 μm; (b) z0 = 50 μm; (c) z0 = 150 μm; (d) z0 = 300 μm.

Fig. 6
Fig. 6

SEM images of SU-8 patterns with different exposure time t: (a) t = 80 s; (b) t = 100 s; (c) t = 120 s; (d) sidewall of the SU-8 pattern in Fig. 6(c); (e) t = 150 s; (f) t = 180 s; (g) t = 200 s; (h) sidewall of the SU-8 pattern in Fig. 6(g).

Fig. 7
Fig. 7

SEM photographs of suspended structures: (a), (c) SU-8 before pyrolysis; (b), (d) C-MEMS structures after pyrolysis.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(P)= 1 jλ E( P 1 ) exp(jkr) r cosθds
E(P)= 1 jλ E( P 1 ) exp{ jk z 0 + jk[ (x x 1 ) 2 + (y y 1 ) 2 ] 2 z 0 } z 0 d x 1 d y 1
E(P)= exp(jk z 0 )E( P 1 ) jλ z 0 exp{ jk[ (x x 1 ) 2 + (y y 1 ) 2 ] 2 z 0 } d x 1 d y 1
E ' (x,y)=E(x,y)+E(x+d,y)+E(xd,y)+E(x,y+d)+E(x+d,y+d)+ E(x+d,xd)+E(xd,y+d)+E(x2d,y+d)+E(xd,yd) +E(x2d,y)+E(x2d,y+d)+E(x2d,yd)
I(x,y)= | E ' (x,y) | 2
E=I(x,y)×t
I ave = Idl l = Idl da

Metrics