Abstract

An Eu-doped Sr5(PO4)3F phosphor with a hexagonal apatite structure was prepared by a urea assisted combustion method. There was evidence of the reduction of Eu3+ to Eu2+ based upon the photoluminescence data. This was confirmed with X-ray photoelectron spectroscopy. Normally, it is very difficult to distinguish between two oxidation states with time-of-flight secondary ion mass spectrometry (TOF-SIMS), but it is shown that the parallel detection capability of the technique allows full molecular and isotopic characterization of the matrix chemistry. The two states were detected by the EuF+ and EuF2+ species, ostensibly the Eu(II) and Eu(III) oxidation states, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
    [CrossRef]
  2. P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
    [CrossRef]
  3. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
    [CrossRef]
  4. A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
    [CrossRef]
  5. K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
    [CrossRef]
  6. D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002).
    [CrossRef]
  7. I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
    [CrossRef]
  8. I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).
  9. A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
    [CrossRef]
  10. G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
    [CrossRef]
  11. C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
    [CrossRef]
  12. S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
    [CrossRef]
  13. G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
    [CrossRef]
  14. W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
    [CrossRef]
  15. J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
    [CrossRef]
  16. P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
    [CrossRef]
  17. A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
    [CrossRef]
  18. R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
    [CrossRef]

2012

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

2011

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

2010

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

2009

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

2008

G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
[CrossRef]

2007

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

2005

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

2003

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

2002

D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002).
[CrossRef]

1995

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

1992

A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
[CrossRef]

Alden, M.

G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
[CrossRef]

Bayramian, A. B.

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

Bianco, A.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Cacciotti, I.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Cardon, F.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Castano, F.

D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002).
[CrossRef]

Chai, B. H. T.

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

Coetsee, E.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Cousseins, J. C.

A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
[CrossRef]

Daniel, Ph.

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

Dhlamini, M. S.

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Dhoble, N. S.

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

Dhoble, S. J.

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

Fiermans, L.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Fragalà, M. E.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Gao, G. J.

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

Godbole, S. V.

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Gruber, J. B.

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

Gusmano, G.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Im, W. B.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Jeon, D. Y.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Jin, H.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Jung, K. Y.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Kaciulis, S.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Kang, J. H.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Kang, Y. C.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Kumar, V.

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Laflère, W. H.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Lamastra, F. R.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Lee, D. C.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Lee, S.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Li, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Lin, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Lin, J.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Liu, X.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Maslankiewicz, P.

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

Mezzi, A.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Mohapatra, M.

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Molina, P.

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

Morris, R. C.

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

Mothudi, B. M.

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Nagpure, I. M.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Ntwaeaborwa, O. M.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Peng, L.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Peng, M. Y.

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

Pitale, S. S.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

Poelman, D.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Reibstein, S.

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

Richter, M.

G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
[CrossRef]

Sardar, D. K.

D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002).
[CrossRef]

Särner, G.

G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
[CrossRef]

Schaffers, K. I.

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

Seltzer, M. D.

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

Swart, H. C.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Szade, J.

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

Tassano, J. B.

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

Terblans, J. J.

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Van Meirhaeghe, R. L.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Vercaemst, R.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

Wang, X.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Winiarski, A.

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

Wondraczek, L.

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

Wright, A. O.

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

Yang, J.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Yang, M.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Zambon, D.

A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
[CrossRef]

Zhang, C.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Zhang, J.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Zhao, X.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Zounani, A.

A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
[CrossRef]

Cryst. Res. Technol.

P. Maślankiewicz, J. Szade, A. Winiarski, and Ph. Daniel, “Bridgman-Stockbarger growth and X-ray photoelectron spectroscopy study of LiY1-xEuxF4 crystals,” Cryst. Res. Technol.40(4-5), 410–418 (2005).
[CrossRef]

J. Alloy. Comp.

A. Zounani, D. Zambon, and J. C. Cousseins, “Optical-properties of Eu3+ activated Sr10F2(PO4)6 elaborated by coprecipitation,” J. Alloy. Comp.188(1–2), 82–86 (1992).
[CrossRef]

I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, S. V. Godbole, and H. C. Swart, “Dependence of Eu3+ luminescence dynamics on the structure of the combustion synthesized Sr5(PO4)3F host,” J. Alloy. Comp.509(5), 2544–2551 (2011).
[CrossRef]

J. Appl. Phys.

D. K. Sardar and F. Castano, “Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)(3)F crystal,” J. Appl. Phys.91(3), 911–915 (2002).
[CrossRef]

A. O. Wright, M. D. Seltzer, J. B. Gruber, and B. H. T. Chai, “Site-selective spectroscopy and determination of energy levels in Eu3+ doped strontium fluorophosphote,” J. Appl. Phys.78(4), 2456–2467 (1995).
[CrossRef]

J. Cryst. Growth

K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+:Sr5(PO4)(3)F] crystals for the Mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003).
[CrossRef]

J. Lumin.

R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflère, and F. Cardon, “An XPS study of the dopants' valence states and the composition of CaS1 − xSex:Eu and SrS1 − xSex:Ce thin film electroluminescent devices,” J. Lumin.63(1–2), 19–30 (1995).
[CrossRef]

J. Mater. Chem.

G. J. Gao, S. Reibstein, M. Y. Peng, and L. Wondraczek, “Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors,” J. Mater. Chem.21(9), 3156–3161 (2011).
[CrossRef]

J. Mater. Sci.

S. J. Dhoble, I. M. Nagpure, N. S. Dhoble, and P. Molina, “Effect of Bi ion on Eu2+ ↔ Eu3+ conversion in CaF2:Eu phosphors for RPL dosimetry,” J. Mater. Sci.46(22), 7253–7261 (2011).
[CrossRef]

J. Phys. Condens. Matter

P. Dorenbos, “Systematic behaviour in trivalent lanthanide charge transfer energies,” J. Phys. Condens. Matter15(49), 8417–8434 (2003).
[CrossRef]

J. Solid State Chem.

C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition,” J. Solid State Chem.182(7), 1673–1678 (2009).
[CrossRef]

Laser Photon. Rev.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Mater. Res. Bull.

J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3:Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull.47(2), 247–252 (2012).
[CrossRef]

Meas. Sci. Technol.

G. Särner, M. Richter, and M. Alden, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol.19(12), 125304 (2008).
[CrossRef]

Nucl. Instrum. Meth. B

H. C. Swart, J. J. Terblans, O. M. Ntwaeaborwa, E. Coetsee, B. M. Mothudi, and M. S. Dhlamini, “Photon emission mechanisms of different phosphors,” Nucl. Instrum. Meth. B267(16), 2630–2633 (2009).
[CrossRef]

Physica B: Condens. Matter

I. M. Nagpure, S. S. Pitale, E. Coetsee, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Lattice site dependent cathodoluminescence behaviour and surface chemical changes in Sr5(PO4)3F host,” Physica B: Condens. Matter407(10), 1505–1508 (2012).

Solid State Commun.

W. B. Im, J. H. Kang, D. C. Lee, S. Lee, D. Y. Jeon, Y. C. Kang, and K. Y. Jung, “Origin of PL intensity increase of CaMgSi2O6: Eu2+ phosphor after baking process for PDPs application,” Solid State Commun.133(3), 197–201 (2005).
[CrossRef]

Surf. Interface Anal.

A. Mezzi, S. Kaciulis, I. Cacciotti, A. Bianco, G. Gusmano, F. R. Lamastra, and M. E. Fragalà, “Structure and composition of electrospun titania nanofibres doped with Eu,” Surf. Interface Anal.42(6-7), 572–575 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The emission spectrum of the Sr5(PO4)3F:Eu1m% phosphor excited at 242 nm. The excitation spectrum monitored at 616 nm is shown as an inset. The decay curves of the Eu2+ and Eu3+ are also shown as insets [7,8].

Fig. 2
Fig. 2

The Eu 3d high resolution XPS spectrum of the Sr5(PO4)3F:Eu1m% phosphor.

Fig. 3
Fig. 3

Images of the Eu-doped phosphor powder. (A) Optical image at the analysis position. The powder particles range in size from ~20 μm to ~100 μm. (B) Total ion image ( + SIMS) of the phosphor particles within a 200 μm x 200 μm field-of-view. The marker is 100 μm. (C) Image of the Sr2PO4+ (271m/z) ion signal.

Fig. 4
Fig. 4

TOF-SIMS chemical images of the Eu-doped phosphor powder. Each image was collected in the positive secondary ion polarity ( + SIMS) and shows specific elemental or chemical distributions across the surface of the particles observed within a 200 μm x 200 μm field-of-view (the marker is 100 μm). (A) Image of the summed C3H7+ (43 m/z) and C4H9+ (57 m/z) ion signals. (B) Image of the Sr+ (88 m/z) ion signal. (C) Image of the EuF+ (172 m/z) ion signal. (D) Image of the EuF2+ (191 m/z) ion signal. The organic fragments shown in panel A arise from the mounting tape and are observed to have contaminated the powder surface during mounting.

Fig. 5
Fig. 5

(A) False colour overlay of the C3H7+/C4H9+ organic fragment ions (image sum; red), the Eu(II)F+ (172 m/z; green) poison ion, and the Eu(III)F2+ (191 m/z; blue) dopant ion. ((B) False colour overlay of the Eu(II)F+ (172 m/z; green) poison ion and the Eu(III)F2+ (191 m/z; blue) dopant ion. In each image, the field-of-view is 200 μm x 200 μm and the marker is 100 μm. Note that while the Eu(II) poison is distributed throughout the phosphor particles, the localization observed within certain particles improves the confidence regarding the identification of a distinct Eu oxidation state in the absence of pure reference materials.

Metrics