Abstract

A polarization independent variable optical attenuator (VOA) based on a dielectrically stretched liquid crystal (LC) droplet is demonstrated. In the voltage-off state, the proposed VOA has the smallest attenuation. As voltage increases, the LC droplet is stretched by a dielectrophoretic force, which gradually deflects the beam leading to an increased attenuation. Such a VOA can cover the entire C-Band. At λ = 1550 nm, the following results are obtained: dynamic range ~32 dB, insertion loss ~0.7 dB, polarization dependent loss ~0.3 dB, and response time ~20 ms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
    [CrossRef]
  2. S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
    [CrossRef]
  3. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
    [CrossRef] [PubMed]
  4. M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
    [CrossRef]
  5. R. A. Soref and D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device,” Opt. Lett. 5(4), 147–149 (1980).
    [CrossRef] [PubMed]
  6. N. A. Riza and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt. 43(17), 3449–3455 (2004).
    [CrossRef] [PubMed]
  7. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [CrossRef]
  8. F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
    [CrossRef]
  9. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [CrossRef] [PubMed]
  10. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
    [CrossRef] [PubMed]
  11. K. Takizawa, K. Kodama, and K. Kishi, “Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals,” Appl. Opt. 37(15), 3181–3189 (1998).
    [CrossRef] [PubMed]
  12. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
    [CrossRef]
  13. W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
    [CrossRef] [PubMed]
  14. W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
    [CrossRef]
  15. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [CrossRef] [PubMed]
  16. C. G. Tsai and J. A. Yeh, “Circular dielectric liquid iris,” Opt. Lett. 35(14), 2484–2486 (2010).
    [CrossRef] [PubMed]
  17. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [CrossRef] [PubMed]
  18. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
    [CrossRef] [PubMed]
  19. J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
    [CrossRef]
  20. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [CrossRef]
  21. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [CrossRef] [PubMed]
  22. C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
    [CrossRef] [PubMed]
  23. G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers 2: Properties (Plenum Press, New York, 1999).
  24. H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip 11(20), 3426–3430 (2011).
    [CrossRef] [PubMed]
  25. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (Cambridge, MIT, 1967).
  26. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42(3), 550–565 (2003).
    [CrossRef] [PubMed]
  27. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  28. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  29. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]

2012 (2)

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (2)

2009 (4)

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[CrossRef]

2008 (2)

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

2005 (1)

2004 (5)

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

N. A. Riza and S. A. Khan, “Liquid-crystal-deflector based variable fiber-optic attenuator,” Appl. Opt. 43(17), 3449–3455 (2004).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

2003 (1)

2001 (1)

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

1998 (1)

1982 (1)

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
[CrossRef]

1980 (1)

Beni, G.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
[CrossRef]

Chen, K. M.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[CrossRef]

Chigrinov, V.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Cui, H. Q.

Du, F.

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

Dürr, P.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Fan, Y. H.

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Hackwood, S.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
[CrossRef]

Hsieh, H. T.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Hu, W.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Huang, T. J.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

Huang, Y.

Hung, S. H.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Jackel, J. L.

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
[CrossRef]

Karuwan, C.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Khan, S. A.

Kishi, K.

Kodama, K.

Kück, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Kunze, D.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Lakner, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Lapsley, M. I.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

Li, Y.

Liang, X.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Lin, S. C. S.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

Lin, X. W.

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Lin, Y. H.

Lin, Y. J.

Lu, Y. Q.

Mao, X.

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

McMahon, D. H.

Mugele, F.

Murade, C. U.

Oh, J. M.

Patthanasettakul, V.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Phokharatkul, D.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Ren, D.

Ren, H.

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip 11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Riza, N. A.

Schenk, H.

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Soref, R. A.

Srivastava, A.

Srivastava, A. K.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Su, G. D. J.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Sukthang, K.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Sun, J. T.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

Takizawa, K.

Tsai, C. G.

Tuantranont, A.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

van Buren, M.

van den Ende, D.

Wechsatol, W.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Wisitsoraat, A.

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Wu, J.

Wu, S. T.

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip 11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[CrossRef]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Wu, Y. H.

Wu, Z. J.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Xianyu, H.

Xu, F.

Xu, S.

Yan, J.

Yariv, A.

Yeh, J. A.

Zhu, G.

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

Zhu, L.

Appl. Opt. (3)

Appl. Phys. Lett. (4)

J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40(1), 4–5 (1982).
[CrossRef]

M. I. Lapsley, S. C. S. Lin, X. Mao, and T. J. Huang, “An in-plane, variable optical attenuator using a fluid-based tunable reflective interface,” Appl. Phys. Lett. 95(8), 083507 (2009).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[CrossRef]

W. Hu, A. K. Srivastava, X. W. Lin, X. Liang, Z. J. Wu, J. T. Sun, G. Zhu, V. Chigrinov, and Y. Q. Lu, “Polarization independent liquid crystal gratings based on orthogonal photoalignments,” Appl. Phys. Lett. 100(11), 111116 (2012).
[CrossRef]

J. Micromech. Microeng. (1)

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Du, Y. Q. Lu, H. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Lab Chip (1)

H. Ren, S. Xu, and S. T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip 11(20), 3426–3430 (2011).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-Based VOA with a small polarization dependent loss,” Opt. Commun. 282(22), 4374–4377 (2009).
[CrossRef]

Opt. Express (9)

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
[CrossRef] [PubMed]

L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef] [PubMed]

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

W. Hu, A. Srivastava, F. Xu, J. T. Sun, X. W. Lin, H. Q. Cui, V. Chigrinov, and Y. Q. Lu, “Liquid crystal gratings based on alternate TN and PA photoalignment,” Opt. Express 20(5), 5384–5391 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Sens. Actuators A Phys. (1)

H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys. 89(1–2), 104–111 (2001).
[CrossRef]

Talanta (1)

C. Karuwan, K. Sukthang, A. Wisitsoraat, D. Phokharatkul, V. Patthanasettakul, W. Wechsatol, and A. Tuantranont, “Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip,” Talanta 84(5), 1384–1389 (2011).
[CrossRef] [PubMed]

Other (3)

G. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers 2: Properties (Plenum Press, New York, 1999).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

P. Penfield and H. A. Haus, Electrodynamics of Moving Media (Cambridge, MIT, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Side-view structure of the VOA at V = 0, (b) V>0, and (c) the layout of the interdigitated ITO electrode and Teflon layer on the bottom substrate (The hole size and the width of ITO stripes are not drawn by scale.)

Fig. 2
Fig. 2

Experimental setup for characterizing the VOA sample.

Fig. 3
Fig. 3

Measured (a) Attenuation and PDL vs. operating voltages and (b) Switching time at V = 40Vrms (λ = 1550nm).

Fig. 4
Fig. 4

Droplet surface stretching and beam deflection with increased voltage.

Fig. 5
Fig. 5

Measured VOA broadband operation at (a) V = 25Vrms (~5dB attenuation setting), (b) V = 30Vrms (~20dB attenuation setting) and (c) V = 35Vrms (~30dB attenuation setting) for C-Band operation with OSA resolution of 10 dB/Div, and (d) V = 20Vrms (~3dB attenuation setting) with OSA resolution of 2 dB/Div.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = ε 0 2 ( ε 1 ε 2 )(EE),

Metrics