Abstract

Dielectric microspheres are capable of confining light in a three dimensional region of sub-wavelength dimensions in appropriate illuminating conditions. A compound set of metal-dielectric microspheres permitting light confined in an effective volume as small as 0.095 (λ/n)3 is shown, together with a strong focusing effect when the spheres are illuminated by focused radially polarized beams. This strong confinement arises from the surface plasmon hotspots on the rear side of the metallic microsphere induced by the so called photonic nanojets of the dielectric microsphere, and the compound set has been optimized to achieve the best result. Full width at half maximum (FWHM) could be optimized to 73nm (~0.11λ) in axial direction and 146nm (~0.23λ) in transversal direction separately. The beam shaped in that way is suitable for applications requiring small effective volume and/or strong peak intensities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).
  2. A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
    [CrossRef]
  3. M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
    [CrossRef]
  4. B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).
  5. J. Wenger and H. Rigneault, “Photonic methods to enhance fluorescence correlation spectroscopy and single molecule fluorescence detection,” Int. J. Mol. Sci. 11(1), 206–221 (2010).
    [CrossRef] [PubMed]
  6. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
    [CrossRef] [PubMed]
  7. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [CrossRef] [PubMed]
  8. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19(4), 3440–3448 (2011).
    [CrossRef] [PubMed]
  9. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [CrossRef] [PubMed]
  10. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
    [CrossRef] [PubMed]
  11. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
    [CrossRef] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  13. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  14. M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
    [CrossRef] [PubMed]
  15. C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
    [CrossRef]
  16. Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
    [CrossRef]
  17. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
    [CrossRef] [PubMed]
  18. A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express 20(8), 9052–9057 (2012).
    [CrossRef] [PubMed]
  19. T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
    [CrossRef]
  20. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
    [CrossRef]
  21. S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [CrossRef] [PubMed]
  22. C.-Y. Liu, “Superenhanced photonic nanojet by core-shell microcylinders,” Phys. Lett. A 376(23), 1856–1860 (2012).
    [CrossRef]
  23. A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E, 73930E-9 (2009).
    [CrossRef]
  24. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  25. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
    [CrossRef]
  26. G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys. 43(5), 051002 (2010).
    [CrossRef]

2012 (3)

A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express 20(8), 9052–9057 (2012).
[CrossRef] [PubMed]

C.-Y. Liu, “Superenhanced photonic nanojet by core-shell microcylinders,” Phys. Lett. A 376(23), 1856–1860 (2012).
[CrossRef]

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

2011 (4)

Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
[CrossRef]

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[CrossRef] [PubMed]

A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19(4), 3440–3448 (2011).
[CrossRef] [PubMed]

2010 (5)

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

J. Wenger and H. Rigneault, “Photonic methods to enhance fluorescence correlation spectroscopy and single molecule fluorescence detection,” Int. J. Mol. Sci. 11(1), 206–221 (2010).
[CrossRef] [PubMed]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[CrossRef]

G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys. 43(5), 051002 (2010).
[CrossRef]

2009 (4)

2008 (2)

2007 (1)

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[CrossRef] [PubMed]

2003 (1)

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

2001 (1)

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

2000 (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Afanasiev, A.

Agareva, N.

Alexandrov, A. P.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Antoszyk, A. N.

Aouani, H.

Arnold, N.

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Astratov, V. N.

Backman, V.

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bityurin, N.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Boneberg, J.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Bonod, N.

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E, 73930E-9 (2009).
[CrossRef]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Bredikhin, V.

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Chen, Z.

Colas des Francs, G.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Darafsheh, A.

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Deiss, F.

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Devilez, A.

Ding, Z. H.

Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
[CrossRef]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Fardad, A.

Ferrand, P.

Fried, N. M.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Gachet, D.

Geints, Y. E.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[CrossRef]

Gérard, D.

Hao, X.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

Hao, X. A.

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Herzig, H. P.

Hong, M. H.

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Huang, S. M.

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Joseph, N.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

Khan, A.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Kim, M. S.

Kong, S. C.

Kuang, C.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

Kuang, C. F.

Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
[CrossRef]

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Leiderer, P.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Lenne, P.-F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Li, L.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Li, X.

Liu, C.-Y.

C.-Y. Liu, “Superenhanced photonic nanojet by core-shell microcylinders,” Phys. Lett. A 376(23), 1856–1860 (2012).
[CrossRef]

Liu, X.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Liu, Y.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
[CrossRef]

Longhi, S.

G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys. 43(5), 051002 (2010).
[CrossRef]

Luk‘yanchuk, B. S.

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Luk'yanchuk, B. S.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

Luo, D.

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

Markey, L.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Mosbacher, M.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Mühlig, S.

Münzer, H. J.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Panina, E. K.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[CrossRef]

Pikulin, A.

Popov, E.

Rigneault, H.

Rockstuhl, C.

Sahakian, A.

Scharf, T.

Sheikh, M. A.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Sojic, N.

Solis, J.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Stout, B.

Taflove, A.

Valle, G. D.

G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys. 43(5), 051002 (2010).
[CrossRef]

Wang, T. T.

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

Wang, Z.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Wang, Z. B.

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Wenger, J.

J. Wenger and H. Rigneault, “Photonic methods to enhance fluorescence correlation spectroscopy and single molecule fluorescence detection,” Int. J. Mol. Sci. 11(1), 206–221 (2010).
[CrossRef] [PubMed]

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
[CrossRef] [PubMed]

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E, 73930E-9 (2009).
[CrossRef]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

Whitehead, D. J.

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Ying, H. S.

Zemlyanov, A. A.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[CrossRef]

Zimmermann, J.

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

M. Mosbacher, H. J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, and P. Leiderer, “Optical field enhancement effects in laser-assisted particle removal,” Appl. Phys., A Mater. Sci. Process. 72(1), 41–44 (2001).
[CrossRef]

B. S. Luk‘yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).

Int. J. Mol. Sci. (1)

J. Wenger and H. Rigneault, “Photonic methods to enhance fluorescence correlation spectroscopy and single molecule fluorescence detection,” Int. J. Mol. Sci. 11(1), 206–221 (2010).
[CrossRef] [PubMed]

J. Opt. (1)

T. T. Wang, C. F. Kuang, X. A. Hao, and X. Liu, “Subwavelength focusing by a microsphere array,” J. Opt. 13(3), 035702 (2011).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. At. Mol. Opt. Phys. 43(5), 051002 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Khan, Z. Wang, M. A. Sheikh, D. J. Whitehead, and L. Li, “Parallel near-field optical micro/nanopatterning on curved surfaces by transported micro-particle lens arrays,” J. Phys. D Appl. Phys. 43(30), 305302 (2010).
[CrossRef]

Nano Lett. (1)

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Opt. Commun. (3)

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[CrossRef]

C. Kuang, Y. Liu, X. Hao, D. Luo, and X. Liu, “Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion,” Opt. Commun. 285(4), 402–406 (2012).
[CrossRef]

Y. Liu, C. F. Kuang, and Z. H. Ding, “Strong confinement of two-photon excitation field by photonic nanojet with radial polarization illumination,” Opt. Commun. 284(19), 4824–4827 (2011).
[CrossRef]

Opt. Express (9)

A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009).
[CrossRef] [PubMed]

A. Pikulin, A. Afanasiev, N. Agareva, A. P. Alexandrov, V. Bredikhin, and N. Bityurin, “Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres,” Opt. Express 20(8), 9052–9057 (2012).
[CrossRef] [PubMed]

S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[CrossRef] [PubMed]

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
[CrossRef] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
[CrossRef] [PubMed]

A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19(4), 3440–3448 (2011).
[CrossRef] [PubMed]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[CrossRef] [PubMed]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[CrossRef] [PubMed]

P I Mech Eng C-J. Mec. (1)

Z. B. Wang, N. Joseph, L. Li, and B. S. Luk'yanchuk, “A review of optical near-fields in particle/tip-assisted laser nanofabrication,” P I Mech Eng C-J. Mec. 224, 1113–1127 (2010).

Phys. Lett. A (1)

C.-Y. Liu, “Superenhanced photonic nanojet by core-shell microcylinders,” Phys. Lett. A 376(23), 1856–1860 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E, 73930E-9 (2009).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The total electric field intensity map in linear scale for simple photonic nanojets (illuminated by linearly polarized waves at λ = 635nm). (b) The total electric field intensity map in linear scale for compound microspheres illuminated by radial polarized beams at λ = 635nm. In both cases, spheres are surrounded by solution with n = 1.33. The black circle represents the 6µm dielectric microsphere (n = 1.6) section, and the white circle represents the 1.4µm silver microsphere section. (c) and (e) display intensity distributions for dielectric microsphere along transverse axis (x) at beam waist and propagation axis (z) corresponding to (a), and so as to (d) and (f) corresponding to (b).

Fig. 2
Fig. 2

Total electric field intensity map in linear scale for compound microspheres of different sizes illuminated by radial polarized beams at λ = 635nm. And (a) represents the compound microspheres with a 6µm dielectric sphere (blue circle) and a 1µm silver sphere (white circle), so as to (b) with a 1.8µm silver sphere (white circle).

Fig. 3
Fig. 3

(a) displays intensity distribution for compound microspheres with different silver spheres sizes along transverse axis (x). The green dash dot line represents the case of compound microspheres with 1µm diameter silver sphere. And so as to 1.2µm silver sphere in blue dot line, 1.4µm in black straight line, 1.5µm in red dash line, 1.8µm in magenta short dash line. (b) illuminates that the FWHM at the waist of focused light field increases as bigger sphere size.

Fig. 4
Fig. 4

Total electric field intensity map in linear scale for compound microspheres of different position illuminated by radial polarized beams at λ = 635nm. The blue circle represents the dielectric microsphere section, and the white circle represents the silver microsphere section. Diameter of dielectric microsphere is 6µm, and 1µm for the silver sphere. Refractive index of the dielectric microsphere is 1.6. (a) represents the silver sphere is 0.4µm away from dielectric sphere’s surface. (b) represents the silver sphere is 1µm away from dielectric sphere’s surface.

Fig. 5
Fig. 5

(a) Peak intensity as a function of silver sphere’s position. (b) Intensity distribution for 6µm dielectric microsphere along propagation axis (z).

Fig. 6
Fig. 6

Total electric field intensity map in linear scale for compound microspheres illuminated by different focused beams with 15µm waist at λ = 635nm. (a) and (b) represent the compound microspheres (6µm dielectric microsphere with n = 1.6 in black circle and 1.4µm silver sphere in white circle) illuminated by linearly polarized waves. (c) and (d) are similar with (a) (b), while illuminated by circularly polarized waves. (e) and (f) represent compound spheres are illuminated by azimuthally polarized beams. The silver sphere is 1µm in this part, and represented by black circle in (f).

Fig. 7
Fig. 7

Simplified models of silver spheres illuminated by different incident beams. (a) is corresponding to linearly polarized beams and (b) is for radially polarized beams.

Tables (1)

Tables Icon

Table 1 Summary of the characteristics width corresponding to different methods

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E inc (r)= n=1 i n { ( 2n+1 )/[ n( n+1 ) ] }[ M oln (1) (r)i N eln (1) (r) ]
E scat (r)= n=1 i n { ( 2n+1 )/[ n( n+1 ) ] }[ i a n N eln (3) (r) b n M oln (3) (r) ]
E x (r,θ)= E 0 ρ exp(ρ/2)cos(θ)
E y (r,θ)= E 0 ρ exp(ρ/2)sin(θ)
E r (r,θ)= x E (x) (r,θ)+ y E (y) (r,θ)= r E 0 ρ exp(ρ/2)

Metrics