Abstract

The angular dependence of terahertz (THz) emission from birefringent crystals can differ significantly from that of cubic crystals. Here we consider optical rectification in uniaxial birefringent materials, such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP2 and compared to (zincblende) GaP. Although the crystals share the same nonzero second-order tensor elements, the birefringence in chalcopyrite crystals cause the pump pulse polarization to evolve as it propagates through the crystal, resulting in a drastically different angular dependence in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut chalcopyrite crystals and predicts more efficient conversion for the {114} crystal cut over the {012}- and {110}-cuts.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [CrossRef]
  2. P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [CrossRef]
  3. K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
    [CrossRef] [PubMed]
  4. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
    [CrossRef]
  5. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [CrossRef]
  6. D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
    [CrossRef]
  7. J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2.,” Opt. Lett. 37(5), 788–790 (2012).
    [CrossRef] [PubMed]
  8. C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B 26(9), A58–A65 (2009).
    [CrossRef]
  9. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822–1835 (2006).
    [CrossRef]
  10. F. D. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinsek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16(21), 16496–16508 (2008).
    [CrossRef] [PubMed]
  11. J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, 1975).
  12. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science + Business Media, 2009).
  13. P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  14. S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
    [CrossRef]
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998).
  16. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
    [CrossRef]
  17. M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
    [CrossRef]
  18. K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2(1-2), 11–25 (2008).
    [CrossRef]
  19. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18(3), 313–317 (2001).
    [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).

2012 (1)

2011 (1)

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

2010 (2)

K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
[CrossRef] [PubMed]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

2009 (2)

C.-W. Chen, T.-T. Tang, S.-H. Lin, J. Y. Huang, C.-S. Chang, P.-K. Chung, S.-T. Yen, and C.-L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B 26(9), A58–A65 (2009).
[CrossRef]

S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
[CrossRef]

2008 (4)

2007 (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

2006 (1)

2005 (1)

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

2001 (1)

1994 (1)

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Bakker, H. J.

Bartal, B.

Brant, A. T.

Bristow, A. D.

Brunner, F. D.

Chang, C.-S.

Chen, C.-W.

Chicklis, E. P.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Chung, P.-K.

Cooke, D.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Creeden, D.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Dove, W.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Edwards, G. J.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Fischer, B.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Giles, N. C.

Günter, P.

Halliburton, L. E.

J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2.,” Opt. Lett. 37(5), 788–790 (2012).
[CrossRef] [PubMed]

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Hargreaves, S.

S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
[CrossRef]

Hebling, J.

Helm, H.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Hoffmann, M.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Hoffmann, M. C.

Hopkins, F. K.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Huang, J. Y.

Jazbinsek, M.

Jepsen, P. U.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Ketteridge, P. A.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Khan, R. U. A.

Koch, M.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Komiak, J. J.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Kuhn, W. K.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Kwon, O.-P.

Kwon, S.-J.

Lauderdale, W. J.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Lewis, R. A.

S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
[CrossRef]

Lin, S.-H.

McCarthy, J. C.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Modjesch, G.

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Nakajima, M.

K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
[CrossRef] [PubMed]

Neis, M.

Nelson, K. A.

Nienhuys, H.-K.

Ohmer, M. C.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Pan, C.-L.

Pierce, J. K.

Planken, P. C. M.

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[CrossRef]

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Radhanpura, K.

S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
[CrossRef]

Rakowsky, M. H.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Rowley, J. D.

Ruiz, B.

Schneider, A.

Schunemann, P. G.

J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2.,” Opt. Lett. 37(5), 788–790 (2012).
[CrossRef] [PubMed]

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[CrossRef]

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Scripsick, M. P.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[CrossRef]

Southward, T.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

Stillhart, M.

Suemoto, T.

K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
[CrossRef] [PubMed]

Tang, T.-T.

Vodopyanov, K.

K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2(1-2), 11–25 (2008).
[CrossRef]

Wenckebach, T.

Yamaguchi, K.

K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
[CrossRef] [PubMed]

Yeh, K.-L.

Yen, S.-T.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, T. Southward, P. G. Schunemann, J. J. Komiak, W. Dove, and E. P. Chicklis, “Compact fiber-pumped terahertz source based on difference frequency mixing in ZGP,” IEEE J. Sel. Top. Quantum Electron. 13(3), 732–737 (2007).
[CrossRef]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310(7-9), 1891–1896 (2008).
[CrossRef]

J. Opt. Soc. Am. B (4)

Laser Photon. Rev. (2)

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

K. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2(1-2), 11–25 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Hargreaves, K. Radhanpura, and R. A. Lewis, “Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation,” Phys. Rev. B 80(19), 195323 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

K. Yamaguchi, M. Nakajima, and T. Suemoto, “Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation,” Phys. Rev. Lett. 105(23), 237201 (2010).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005).
[CrossRef]

Other (5)

J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon Press, 1975).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer Science + Business Media, 2009).

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, 1998).

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley-Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental and theoretical THz peak-to-peak field amplitude for a (a) (110)-cut GaP crystal with zincblende structure [14] and (b) (110)-cut ZnGeP2 crystal with chalcopyrite structure and uniaxial birefringence. Theoretical prediction of the THz emission for uniaxial chalcopyrite structures cut in the (c) (012) plane and (d) (114) plane.

Fig. 2
Fig. 2

Zincblende and chalcopyrite crystal structures for the planes considered. The arrow shows the direction of the [001] projected onto the plane of the page.

Fig. 3
Fig. 3

(a) Arbitrary polarization state defined at a depth (D) in the crystal with uniaxial index ellipsoid. Major, minor axes and the rotation angle relative to are a, b and β respectively. (b) Examples of the various pump polarization states at different relative phase delays in the crystal.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P i (2) = j,k 2 ε o d ijk (0,ω,ω) E j (ω) E k * (ω)
E(θ,D,t)= E o sinθexp[ i( k o D+ωt) ]+ E o cosθexp[ i( k e D+ωt) ],
P X (2) (D)=2 2 ε o E o 2 d 14 cos( k d D)cosθsinθ P Y 2 (D)=2 2 ε o E o 2 d 14 cos( k d D)cosθsinθ P Z 2 (D)=2 ε o E o 2 d 36 sin 2 θ
E THz C (θ) P C (2) =2 ε o E o 2 d 36 cosθ sin 2 θ,
E THz X (θ) P X (2) =2 ε o E o 2 d 36 sin 3 θ.
E THz C,(012) 2 ε 0 E 0 2 d 14 cos 2 θsinθ
E THz X,(012) 2 ε 0 E 0 2 d 14 cos 3 θ
E THz C,(114) ( 2/6 3 ) ε 0 E 0 2 cosθ[ 8 d 14 cos 2 θ+ d 36 (1+5cos2θ) ]
E THz X,(114) ( 2/6 3 ) ε 0 E 0 2 sinθ[ 8 d 14 cos 2 θ+ d 36 ( 1+5cos2θ ) ]

Metrics