Abstract

An alternative scheme is proposed for the generation of an N-qubit Greenberger-Horne-Zeilinger (GHZ) state with distant nitrogen-vacancy (N-V) centers confined in spatially separated photonic crystal (PC) nanocavities via input-output process of photon. The GHZ state is produced by the phase shift brought by the input-output photon. The certain polarized photon transmitted from a PC nanocavity side-coupled a waveguide can obtain different phase shifts due to the different spin states in diamond N-V centers and the optical spin selection rule. Our calculations show that the proposed scheme can work well with a large cavity damping rate which ensures the efficient output of photon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
    [CrossRef]
  2. N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett.65, 1838–1840 (1990).
    [CrossRef] [PubMed]
  3. J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
    [CrossRef]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  5. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
    [CrossRef]
  6. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
    [CrossRef]
  7. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001).
    [CrossRef] [PubMed]
  8. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998).
    [CrossRef]
  9. N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997).
    [CrossRef]
  10. R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
    [CrossRef]
  11. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett.29, 1144–1146 (2004).
    [CrossRef] [PubMed]
  12. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
    [CrossRef]
  13. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
    [CrossRef] [PubMed]
  14. X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
    [CrossRef] [PubMed]
  15. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett.87, 230404 (2001).
    [CrossRef] [PubMed]
  16. C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
    [CrossRef] [PubMed]
  17. X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
    [CrossRef]
  18. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
    [CrossRef]
  19. X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
    [CrossRef]
  20. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
    [CrossRef]
  21. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
    [CrossRef]
  22. S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
    [CrossRef]
  23. K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
    [CrossRef]
  24. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004).
    [CrossRef]
  25. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
    [CrossRef]
  26. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
    [CrossRef]
  27. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
    [CrossRef] [PubMed]
  28. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
    [CrossRef] [PubMed]
  29. R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
    [CrossRef]
  30. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
    [CrossRef]
  31. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
    [CrossRef]
  32. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
    [CrossRef] [PubMed]
  33. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
    [CrossRef] [PubMed]
  34. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
    [CrossRef] [PubMed]
  35. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
    [CrossRef]
  36. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
    [CrossRef]
  37. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
    [CrossRef] [PubMed]
  38. S. Tomljenovic-Hanic, M. J. Steel, and C. Martijn de Sterke, “Diamond based photonic crystal microcavities,” Opt. Express14, 3556–3562 (2006).
    [CrossRef] [PubMed]
  39. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 19136–19145 (2008).
    [CrossRef]
  40. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
    [CrossRef] [PubMed]
  41. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
    [CrossRef]
  42. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
    [CrossRef] [PubMed]
  43. F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
    [CrossRef]
  44. S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003).
    [CrossRef]
  45. Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
    [CrossRef] [PubMed]
  46. A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995).
    [CrossRef]
  47. E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
    [CrossRef]
  48. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
    [CrossRef] [PubMed]
  49. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
    [CrossRef]
  50. L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
    [CrossRef]
  51. Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett.28, 1793–1795 (2003).
    [CrossRef] [PubMed]
  52. J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19, 20991–21002 (2011).
    [CrossRef] [PubMed]
  53. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  54. D. Walls and G. Milburm, Quantum Optics (Springer, 1994).
  55. C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, 2004).
  56. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
    [CrossRef] [PubMed]
  57. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
    [CrossRef]
  58. P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
    [CrossRef]
  59. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
    [CrossRef]
  60. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009).
    [CrossRef] [PubMed]
  61. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
    [CrossRef] [PubMed]
  62. C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
    [CrossRef]
  63. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006).
    [CrossRef] [PubMed]
  64. J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
    [CrossRef]
  65. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
    [CrossRef]
  66. Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
    [CrossRef] [PubMed]
  67. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.
  68. R. Bose, D. Sridharan, G. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19, 5398–5409 (2011).
    [CrossRef] [PubMed]

2011

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

R. Bose, D. Sridharan, G. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19, 5398–5409 (2011).
[CrossRef] [PubMed]

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19, 20991–21002 (2011).
[CrossRef] [PubMed]

2010

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
[CrossRef]

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

2009

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009).
[CrossRef] [PubMed]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef] [PubMed]

2008

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 19136–19145 (2008).
[CrossRef]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
[CrossRef]

2007

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

2006

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, M. J. Steel, and C. Martijn de Sterke, “Diamond based photonic crystal microcavities,” Opt. Express14, 3556–3562 (2006).
[CrossRef] [PubMed]

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
[CrossRef] [PubMed]

2005

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
[CrossRef]

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

2004

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
[CrossRef]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett.29, 1144–1146 (2004).
[CrossRef] [PubMed]

2003

Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett.28, 1793–1795 (2003).
[CrossRef] [PubMed]

S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

2001

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett.87, 230404 (2001).
[CrossRef] [PubMed]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001).
[CrossRef] [PubMed]

2000

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
[CrossRef]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

1999

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

1998

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998).
[CrossRef]

1997

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997).
[CrossRef]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

1996

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

1995

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995).
[CrossRef]

1990

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett.65, 1838–1840 (1990).
[CrossRef] [PubMed]

1988

E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
[CrossRef]

1935

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Andersen, U. L.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

Awschalom, D. D.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

Balasubramanian, G.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Barclay, P. E.

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
[CrossRef] [PubMed]

Batalov, A.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Bayat, A.

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

Beausoleil, R. G.

Becher, C.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Beck, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Benhelm, J.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Benson, O.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
[CrossRef] [PubMed]

Blatt, R.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Bollinger, J. J.

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

Bose, R.

Bose, S.

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004).
[CrossRef]

Bourennane, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998).
[CrossRef]

Bouwmeester, D.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

Briegel, H. J.

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Chong, B.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
[CrossRef]

Cleve, R.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
[CrossRef]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Daniell, M.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Deng, L.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
[CrossRef]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett.29, 1144–1146 (2004).
[CrossRef] [PubMed]

Dinyari, K. N.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Dobrovitski, V. V.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

Domhan, M.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Draganski, M.

Du, J. F.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Duan, L. M.

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
[CrossRef]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

Eibl, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
[CrossRef]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Epstein, R. J.

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

Eto, Y.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Fan, F. Z.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Fan, S.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Fattal, D.

Feiguin, A. E.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

Fejer, M. M.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

Feng, M.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Fiorentino, M.

Fu, K. M.

Gaebel, T.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, 2004).

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

Gisin, N.

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997).
[CrossRef]

Glasbeek, M.

E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
[CrossRef]

Gottesman, D.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Greentree, A. D.

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
[CrossRef] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

Gurudev Dutt, M. V.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Gywat, O.

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

Haffner, H.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Hagemeier, J.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Hagley, E. W.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
[CrossRef]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Hansel, W.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Hanson, R.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

Hao, X. Y.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Harneit, W.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Harris, J. S.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Heeres, E. C.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Heinzen, D.

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Huck, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

Huo, Y.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

Ishizaka, S.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
[CrossRef]

Itano, W. M.

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

Jacques, V.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Jamieson, D. N.

Jelezko, F.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Kahn, J. M.

Karlsson, A.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998).
[CrossRef]

Kato, Y. K.

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

Kiesel, N.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

Kim, H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.

Kim, S. H.

S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

Kniepert, J.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

Kolesov, R.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Koshino, K.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
[CrossRef]

Kozuma, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Kumar, S.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

Kurtsiefer, C.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

Lancaster, G. P. T.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Lee, Y. H.

S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003).
[CrossRef]

Lenef, A.

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995).
[CrossRef]

Li, J. H.

Liu, J. B.

Lo, H. K.

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
[CrossRef]

Löchel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
[CrossRef] [PubMed]

Loncar, M.

Lü, X. Y.

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef] [PubMed]

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Lukin, M. D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Mancini, S.

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Manson, N. B.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
[CrossRef]

Martijn de Sterke, C.

Massar, S.

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997).
[CrossRef]

Mathis, W.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

McCutcheon, M. W.

Meijer, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Mendoza, F. M.

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

Mermin, N. D.

N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett.65, 1838–1840 (1990).
[CrossRef] [PubMed]

Milburm, G.

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).

Nakamura, Y.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
[CrossRef]

Neumann, P.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

Noguchi, A.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett.34, 1108–1110 (2009).
[CrossRef] [PubMed]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Olivero, P.

Oosterkamp, T. H.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Pahlke, K.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Pan, J.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

Pan, J. W.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Payne, M. G.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
[CrossRef]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

Peng, X.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Petroff, P. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Pfaff, W.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
[CrossRef]

Popa, I.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

Povinelli, M.

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

Povinelli, M. L.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

Prawer, S.

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
[CrossRef] [PubMed]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Rabeau, J. R.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
[CrossRef] [PubMed]

Rand, S. C.

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995).
[CrossRef]

Raussendorf, R.

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001).
[CrossRef] [PubMed]

Reichart, P.

Riebe, M.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Rogers, L.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Rong, X.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Roos, C. F.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
[CrossRef]

Rubanov, S.

Sandhu, S.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

Santori, C.

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

Schirmer, S. G.

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

Schmidt-Kaler, F.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

Schoenfeld, R.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Si, L. G.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Solomon, G.

Solomon, G. S.

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

Song, H. S.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
[CrossRef]

Song, J.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
[CrossRef]

Song, P. J.

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

Spillane, S. M.

Sridharan, D.

Stavrias, N.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Steel, M. J.

Stuhrmann, N.

Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett.36, 1482–1484 (2011).
[CrossRef] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

Thon, S. M.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Tisler, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Tomljenovic-Hanic, S.

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

Twamley, J.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Ueda, M.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Vahala, K. I.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

van der Sar, T.

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

van Oort, E.

E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
[CrossRef]

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
[CrossRef]

Villeneuve, Pierre R.

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006).
[CrossRef] [PubMed]

Waks, E.

R. Bose, D. Sridharan, G. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19, 5398–5409 (2011).
[CrossRef] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006).
[CrossRef] [PubMed]

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.

Walls, D.

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).

Wang, B.

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
[CrossRef]

Wang, H.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Wang, X.

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

Wang, Y.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Weinfurter, H.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

Wineland, D.

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

Wittmann, C.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

Wrachtrup, J.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

Wu, J.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Wu, Y.

Xia, Y.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
[CrossRef]

Xu, N. Y.

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

Yang, W. L.

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

Yang, X.

Yang, X. X.

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef] [PubMed]

Yu, R.

Zeilinger, A.

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Zhang, P.

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

Zheng, S. B.

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett.87, 230404 (2001).
[CrossRef] [PubMed]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, 2004).

Zou, X. B.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

Am. J. Phys.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58, 1131–1143 (1990).
[CrossRef]

Appl. Phys. Lett.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97, 141108 (2010).
[CrossRef]

T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett.98, 193103 (2011).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett.92, 021127 (2008).
[CrossRef]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett.97, 101102 (2010).
[CrossRef]

Eur. Phys. J. D

S. B. Zheng, “Generation of Greenberger-Horne-Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D54, 719–722 (2009).
[CrossRef]

IEEE J. Quantum Electron.

S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron.39, 1081–1085 (2003).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35, 1322–1330 (1999).
[CrossRef]

J. Phys. C

E. van Oort, N. B. Manson, and M. Glasbeek, “Optically detected spin coherence of the diamond NV centre in its triplet ground state,” J. Phys. C21, 4385–4391 (1988).
[CrossRef]

Nano Lett.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Nat. Mater.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4, 207–210 (2005).
[CrossRef]

Nat. Phys.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2, 81–90 (2006).
[CrossRef]

R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys.1, 94–98 (2005).
[CrossRef]

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys.2, 408–413 (2006).
[CrossRef]

Nature (London)

J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)403, 515–519 (2000).
[CrossRef]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010).
[CrossRef]

New J. Phys.

P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New J. Phys.11, 013017 (2009).
[CrossRef]

Opt. Express

S. Tomljenovic-Hanic, M. J. Steel, and C. Martijn de Sterke, “Diamond based photonic crystal microcavities,” Opt. Express14, 3556–3562 (2006).
[CrossRef] [PubMed]

C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express14, 7986–7994 (2006).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16, 19136–19145 (2008).
[CrossRef]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express17, 9588–9601 (2009).
[CrossRef] [PubMed]

X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express17, 14298–14311 (2009).
[CrossRef] [PubMed]

R. Bose, D. Sridharan, G. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express19, 5398–5409 (2011).
[CrossRef] [PubMed]

J. H. Li and R. Yu, “Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center,” Opt. Express19, 20991–21002 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev.47, 777–780 (1935).
[CrossRef]

Phys. Rev. A

J. J. Bollinger, W. M. Itano, D. Wineland, and D. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A54, 4649–4652(R) (1996).
[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A58, 4394–4400 (1998).
[CrossRef]

X. Wang, A. Bayat, S. Bose, and S. G. Schirmer, “Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain,” Phys. Rev. A82, 012330 (2010).
[CrossRef]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A68, 024302 (2003).
[CrossRef]

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a Λ system,” Phys. Rev. A82, 010301(R) (2010).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A70, 022307 (2004).
[CrossRef]

X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A79, 052330 (2009).
[CrossRef]

Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low- Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A72, 032333 (2005).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A69, 063803 (2004).
[CrossRef]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62, 062314 (2000).
[CrossRef]

Phys. Rev. B

A. Lenef and S. C. Rand, “Electronic structure of the N-V center in diamond: theory,” Phys. Rev. B53, 13441–13455 (1995).
[CrossRef]

J. Pan, S. Sandhu, Y. Huo, M. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B81, 041101 (2010).
[CrossRef]

Phys. Rev. Lett.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett.96,153601 (2006).
[CrossRef] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett.79, 5242–5245 (1997).
[CrossRef]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett.92, 077901 (2004).
[CrossRef] [PubMed]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett.106, 096801 (2011).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett.93, 130501 (2004).
[CrossRef] [PubMed]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett.87, 230404 (2001).
[CrossRef] [PubMed]

N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett.79, 2153–2156 (1997).
[CrossRef]

R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83, 648–651 (1999).
[CrossRef]

H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett.86, 910–913 (2001).
[CrossRef] [PubMed]

Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma, “Projective measurement of a single nuclear spin qubit by using two-mode cavity QED,” Phys. Rev. Lett.106, 160501 (2011).
[CrossRef] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett.92, 076401 (2004).
[CrossRef] [PubMed]

F. Z. Fan, X. Rong, N. Y. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. Schoenfeld, W. Harneit, M. Feng, and J. F. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett.105, 040504 (2010).
[CrossRef]

N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett.65, 1838–1840 (1990).
[CrossRef] [PubMed]

Science

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science304, 1478–1480 (2004).
[CrossRef] [PubMed]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science316, 1312–1316 (2007).
[CrossRef]

R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science320, 352–355 (2008).
[CrossRef] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Other

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “Attojoule all-optical switching with a single quantum dot,” arXiv: 1107.3751.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

D. Walls and G. Milburm, Quantum Optics (Springer, 1994).

C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, 2004).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the coupled PC nanocavity and waveguide system. A two-mode PC nanocavity containing an N-V center is side-coupled to a waveguide with the coupling strength κ, i.e., the cavity damping. a + in, a in and a + out, a out denote the input and output optical field operators in the waveguide. σ+ (σ) shows the corresponding photon with right(left)-polarized state. In the bubble, the detailed energy configuration is described for N-V center in diamond nanocrystal. The transitions |−〉 ⇔ |1〉 and |+〉 ⇔ |1〉 are driven by the R(σ+)- and L(σ)-polarized photon, respectively.

Fig. 2
Fig. 2

Schematic of the setup for the generation of three-qubit GHZ state of three N-V centers which are confined individually in three PC nanocavities. All the nanocavities are coupled identically to a common waveguide. Polarization beam splitters (PBS) transmit V–polarized photons and transmit H–polarized photons; Half-wave plates (HWP) interchange the polarization of photons HV; Quarter-wave plates (QWP) achieve the porlarization changes of the single-photon pulse as |V〉 ⇔ |R〉; Beam splitters (BS) mix the two polarized components.

Fig. 3
Fig. 3

(a) The absolute value of the transmission coefficient |T(ω)| as a function of frequency detuning (ωcω)/γ between the input pulse and PC nanocavity mode with gk = 500γ (red solid curve) and gk = 0 (blue dashed curve); (b) The phase shift ϕ/π as a function of frequency detuning (ωcω)/γ with gk = 500γ (red solid curve) and gk = 0 (blue dashed curve). The other system parameters are chosen as κ = 1000γ and ω0 = ωc.

Fig. 4
Fig. 4

(a) The absolute value of the transmission coefficient |T(ω)| versus the coupling strength gk/γ with κ = 1000γ; (b) |T(ω)| versus the cavity damping κ/γ with gk = 500γ. The other system parameters are chosen as ω = ω0 = ωc.

Fig. 5
Fig. 5

The shape functions for the input pulse (blue solid curve) and the transmitted pulses with the N-V centers in spin states |−〉 (red dashed curve) and in spin states |+〉 (red dotted curve). The transmitted pulses and the input pulse closed match and are hardly distinguishable in the figure.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H ^ = k = R , L { ω c C k C k + ω a k ( ω ) a k ( ω ) d ω + κ 2 π [ i a k ( ω ) C k i a k ( ω ) C k ] d ω } + ( ω 0 i γ 2 ) | 1 1 | + ( i g R | 1 | C R + i g L | 1 + | C L + H . C . ) ,
| ψ ( t ) = k = R , L [ d 1 ( t ) | 1 , 0 | vac + d k c ( t ) | , 1 k | vac + d k a ( t ) a k ( ω ) | , 0 | vac d ω ] .
i d ˙ k c ( t ) = ω c d k c ( t ) i d 1 ( t ) g k i κ 2 π d k a ( t ) d ω ,
i d ˙ k a ( t ) = ω d k a ( t ) + i κ 2 π d k c ( t ) ,
i d ˙ 1 ( t ) = ( ω 0 i γ 2 ) d 1 ( t ) + i [ d R c ( t ) g R + d L c ( t ) g L ] .
d k a ( t ) = e i ω t d k a ( t 0 ) + κ 2 π t 0 t e i ω ( t t ) d k c ( t ) d t for t > t 0
d ˙ k c ( t ) = i ω c d k c ( t ) κ 2 d k c ( t ) d 1 ( t ) g k κ a k in ,
a k in = 1 2 π e i ω t d k a ( t 0 ) d ω
a k out = ( 4 g k 2 4 g k ¯ 2 κ γ ) a k in + 8 g k g k ¯ a k ¯ in 4 g k 2 + 4 g k ¯ 2 + κ γ ,
T ( ω ) = a k out a k in = 1 ,
T ( ω ) = 1 .
{ | R | + | R | + | R | | R | | L | + | L | + | L | | L | ,
1 2 ( | H + | V ) | 0 + 0 + 0 + 1 2 ( | H + | R ) | 0 + 0 + 0 + 1 2 ( | H | 0 + 0 + 0 + + | R | 0 0 0 ) 1 2 ( | H | 0 + 0 + 0 + + | V | 0 0 0 ) 1 2 | V ( | 0 + 0 + 0 + + | 0 0 0 ) .

Metrics