Abstract

A dynamical model based on the photo-physics and photo-chemistry processes for superresolution photoinduced-inhibition nanolithography (SPIN) under both single-photon and two-photon excitation is developed and validated by experimental results. Numerical simulation results for the dot fabrication predict that the theoretical single dot size can be infinitely reduced, which shows diffraction-unlimited feature of the SPIN. A small reaction constant of the inhibitor polymerization is crucial to realize a small dot size and high resolution. It is discovered both theoretically and experimentally that the dot minimum size and best resolution occur under different inhibition beam powers because of the influence from the inhibitor polymerization. Moreover, due to the consumption of the photo-inhibitor molecules in the inhibition process, the dot size may vary during the sequential fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  4. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
    [CrossRef]
  5. M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
    [CrossRef]
  6. J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
    [CrossRef] [PubMed]
  7. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [CrossRef] [PubMed]
  8. J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
    [CrossRef]
  9. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
    [CrossRef] [PubMed]
  10. Y. Cao, Z. Gan, B. Jia, R. A. Evans, and M. Gu, “High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization,” Opt. Express 19(20), 19486–19494 (2011).
    [CrossRef] [PubMed]
  11. L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
    [CrossRef]
  12. J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
    [CrossRef]
  13. N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
    [CrossRef]
  14. M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
    [CrossRef]
  15. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
    [CrossRef]
  16. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. part I. modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  17. W. D. Cook, “Photopolymerization kinetics of dimethacrylates using the camphorquinone amin initiator system,” Polymer (Guildf.) 33(3), 600–609 (1992).
    [CrossRef]
  18. J. P. Fouassier, “Photopolymerization reactions” in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, E. A. Grulke, eds. (Wiley, 1999), p. II/169.
  19. I. V. Khudyakov and N. J. Turro, “Cage effect dynamics under photolysis of photoinitiators,” Des. Monomers Polym. 13, 487–496 (2010).
  20. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive index: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [CrossRef]
  21. B. Chen, Z. Zhang, and J. Pu, “Tight focusing of partially coherent and circularly polarized vortex beams,” J. Opt. Soc. Am. A 26(4), 862–869 (2009).
    [CrossRef] [PubMed]
  22. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  23. C. Y. Park and S. K. Ihm, “Percolation analysis on free radical linear polymerization with instantaneous initiation,” Polym. Bull. 24(5), 539–543 (1990).
    [CrossRef]
  24. I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
    [CrossRef]
  25. G. Odian, Principles of Polymerization, 4th ed. (John Wiley & Sons, Inc., 2004).

2011 (1)

2010 (3)

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

I. V. Khudyakov and N. J. Turro, “Cage effect dynamics under photolysis of photoinitiators,” Des. Monomers Polym. 13, 487–496 (2010).

M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
[CrossRef]

2009 (3)

2008 (2)

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[CrossRef] [PubMed]

2006 (1)

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[CrossRef]

2005 (1)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

2002 (1)

2001 (4)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
[CrossRef]

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

1999 (1)

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1995 (1)

1992 (1)

W. D. Cook, “Photopolymerization kinetics of dimethacrylates using the camphorquinone amin initiator system,” Polymer (Guildf.) 33(3), 600–609 (1992).
[CrossRef]

1990 (1)

C. Y. Park and S. K. Ihm, “Percolation analysis on free radical linear polymerization with instantaneous initiation,” Polym. Bull. 24(5), 539–543 (1990).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Aksay, I. A.

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
[CrossRef]

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Booker, G. R.

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

Brown, J. R.

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cao, Y.

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Chen, B.

Cook, W. D.

W. D. Cook, “Photopolymerization kinetics of dimethacrylates using the camphorquinone amin initiator system,” Polymer (Guildf.) 33(3), 600–609 (1992).
[CrossRef]

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Desilles, N.

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Elliott, B. J.

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Evans, R. A.

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Fox, W. S.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Gan, Z.

Gleeson, M. R.

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. part I. modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

Gu, M.

Hayki, N.

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

Heikal, A. A.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ihm, S. K.

C. Y. Park and S. K. Ihm, “Percolation analysis on free radical linear polymerization with instantaneous initiation,” Polym. Bull. 24(5), 539–543 (1990).
[CrossRef]

Jia, B.

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Khudyakov, I. V.

I. V. Khudyakov and N. J. Turro, “Cage effect dynamics under photolysis of photoinitiators,” Des. Monomers Polym. 13, 487–496 (2010).

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Laczik, Z.

Lebaudy, P.

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

Lecamp, L.

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Lee, J. H.

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
[CrossRef]

Li, J.

M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
[CrossRef]

J. Li, B. Jia, and M. Gu, “Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment,” Opt. Express 16(24), 20073–20080 (2008).
[CrossRef] [PubMed]

Liu, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

Lovell, L. G.

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Marder, S. R.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

McCord-Maughon, D.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

O'Duill, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

Park, C. Y.

C. Y. Park and S. K. Ihm, “Percolation analysis on free radical linear polymerization with instantaneous initiation,” Polym. Bull. 24(5), 539–543 (1990).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Perry, J. W.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Prud’homme, R. K.

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
[CrossRef]

Pu, J.

Purvis, M. B.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Röckel, H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

Serbin, J.

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[CrossRef]

Sheridan, J. T.

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. part I. modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Straub, M.

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Török, P.

Turro, N. J.

I. V. Khudyakov and N. J. Turro, “Cage effect dynamics under photolysis of photoinitiators,” Des. Monomers Polym. 13, 487–496 (2010).

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Varga, P.

Ventura, M. J.

M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
[CrossRef]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Zhang, Z.

Adv. Mater. (2)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17(5), 541–545 (2005).
[CrossRef]

J. Serbin and M. Gu, “Experimental evidence for superprism effects in three-dimensional polymer photonic crystals,” Adv. Mater. 18(2), 221–224 (2006).
[CrossRef]

Appl. Phys. B (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77(6-7), 639–662 (2003).
[CrossRef]

Des. Monomers Polym. (1)

I. V. Khudyakov and N. J. Turro, “Cage effect dynamics under photolysis of photoinitiators,” Des. Monomers Polym. 13, 487–496 (2010).

Ind. Eng. Chem. Res. (1)

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

J. Appl. Phys. (1)

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

J. Mater. Res. (1)

J. H. Lee, R. K. Prud’homme, and I. A. Aksay, “Cure depth in photopolymerization: experiments and theory,” J. Mater. Res. 16(12), 3536–3544 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of three-dimensional photonic crystals in quantum-dot-based materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
[CrossRef]

Macromolecules (1)

N. Hayki, L. Lecamp, N. Desilles, and P. Lebaudy, “Kinetic study of photoinitiated frontal polymerization: influence of UV light intensity variations on the conversion profiles,” Macromolecules 43(1), 177–184 (2010).
[CrossRef]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Polym. Bull. (1)

C. Y. Park and S. K. Ihm, “Percolation analysis on free radical linear polymerization with instantaneous initiation,” Polym. Bull. 24(5), 539–543 (1990).
[CrossRef]

Polymer (Guildf.) (2)

L. G. Lovell, B. J. Elliott, J. R. Brown, and C. N. Bowman, “The effect of wavelength on the polymerization of multi(meth)acrylates with disulfide/benzilketal combinations,” Polymer (Guildf.) 42(2), 421–429 (2001).
[CrossRef]

W. D. Cook, “Photopolymerization kinetics of dimethacrylates using the camphorquinone amin initiator system,” Polymer (Guildf.) 33(3), 600–609 (1992).
[CrossRef]

Science (1)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Other (3)

G. Odian, Principles of Polymerization, 4th ed. (John Wiley & Sons, Inc., 2004).

J. P. Fouassier, “Photopolymerization reactions” in Polymer Handbook, 4th ed., J. Brandrup, E. H. Immergut, E. A. Grulke, eds. (Wiley, 1999), p. II/169.

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Focus profiles of the fabrication laser beam with wavelengths of 488 nm (a) and 800 nm (b) for the single and two-photon excitation respectively, and inhibition beam with the wavelength of 375 nm (c) in the focal region. The calculated area is 2 μm by 2 μm.

Fig. 2
Fig. 2

(a): Dot sizes plotted as a function of the power of the inhibition laser beam. The power of the fabrication laser beam is 200 nW and the exposure time is 700 ms. The sizes of the dots in experiment were measured with a scanning electron microscope (SEM). The parameters used in the calculation are as follows: The absorption cross sections of initiators and inhibitors are 2.1 × 10−21 cm2 and 5.9 × 10−21 cm2, respectively; kd = 5 × 10−5 s−1, rd = 5 × 10−5 s−1; ki = 3 × 107 cm3mol−1s−1,ri = 3.6 × 105 cm3mol−1s−1; kr = 1 × 107 cm3mol−1s−1, rr = 1 × 107 cm3mol−1s−1; kp = 2 × 106 cm3mol−1s−1, rkt = 1.2 × 108 cm3mol−1s−1; kt = 2.4 × 107 cm3mol−1s−1, rt = 1.6 × 107 cm3mol−1s−1; τ1, τ2, τn1 and τn2 are set as 1 × 102 cm3mol−1s−1. The diffusion constant of the initiator/inhibitor radicals is 0.25µm2/s and the diffusion constant of the chain-initiating radicals is 0.05µm2s−1. These values were obtained from the literatures [11, 13, 17, 19, 22, 25] and estimated from the fits to the experimental data. (b): Monomer conversion rate in the focal region at the XY plane for different levels of the inhibition beam powers. The laser beam power corresponds to the Fig. 2(a). Each of the calculated pattern area is 2 μm by 2 μm.

Fig. 3
Fig. 3

(a): The dot size is plotted as a function of the inhibition laser power with different reaction constants of the inhibitor radicals with monomers (normalized by the reaction constant of the initiator radicals with monomers). (b): Calculated achievable dot minimum size for different ri/ki values (the inhibition laser power range is 0-121 μW; other parameters are the same as those used in Fig. 2.

Fig. 4
Fig. 4

Dot size and the resolution plots as a function of the inhibition laser power. For the single-photon case (a), all the parameters used are the same as those in Fig. 2. For the two-photon fabrication case (b), all the parameters related to photo-inhibitor are the same as that used in Fig. 2.

Fig. 5
Fig. 5

The variation of the dot size and resolution with the inhibition laser power. The dots were fabricated with the fabrication beam power of 20 mW at the wavelength of 800 nm. The inhibition beam wavelength was 375 nm and the exposure time was 50 ms. (a): SEM image of the fabricated dots, the scale bar is 2 μm; (b): dot size and resolution date taken from the read box of the left SEM image. The black and red curves are the polynomial fitting of the experimental data to guide eyes. The formulation of the photoresin was composed of 0.02 wt% 2,5-bis(p-dimethylamino cinnamylidene) cyclopentanone, 0.5 wt% camphorquinone and 0.5 wt% ethyl4-(dimethylamino)benzoate as photoinitiator components, and 2.5 wt% TED as the photoinhibitor, and 96.48 wt% SR 349 (Sartomer Inc.). The fabrication beam laser operates at repetition rate of 80 MHz with a 140-femtosencond pulse width. The inhibition beam laser works at CW mode. These two beams are overlapped and introduced to an objective with numerical aperture 1.4. The dot fabrication exposure time is 50 ms. After fabrication, the gelated structure was washed out by rinsing the structure in pure isopropanol for 5 min, then in pure acetone for 2 sec and then in pure ethanol for 2 sec.

Fig. 6
Fig. 6

Simulation of four sequentially fabricated dots for different values of the inhibition beam laser power ((a) to (e)). The first fabricated dot is plotted in the up position, the second down, the third left and the forth right. All the parameters are the same as those used in Fig. 2. Each of the calculated pattern area is 2 μm by 2 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d P 0 dt = σ E I E ( P 0 P 1 )+ τ 1 P 1 +τ n 1 P 1
d P 1 dt = σ E I E ( P 0 P 1 ) τ 1 P 1 τ n 1 P 1 k d P 1 + k r P 2 2
d P 2 dt =2 k d P 1 2 k r P 2 2 k i P 2 M k t P 3 P 2 r t I 2 P 2 r kt I 2 P 2
d P 3 dt = k i P 2 M+ r i I 2 M k t ( P 3 + P 2 ) P 3 r t I 2 P 3 r kt I 2 P 3
d I 0 dt = σ S I S ( I 0 I 1 )+ τ 2 I 1 +τ n 2 I 1
d I 1 dt = σ S I S ( I 0 I 1 ) τ 2 I 1 τ n 2 I 1 r d I 1 + r r I 2 2
d I 2 dt =2 r d I 1 2 r r I 2 2 r i I 2 M r t ( P 3 + P 2 ) I 2 r kt ( P 3 + P 2 ) I 2
dM dt = k p P 3 M

Metrics