Abstract

High density vertically aligned Porous Silicon NanoWires (PSiNWs) were fabricated on silicon substrate using metal assisted chemical etching process. A linear dependency of nanowire length to the etching time was obtained and the change in the growth rate of PSiNWs by increasing etching durations was shown. A typical 2D bright-field TEM image used for volume reconstruction of the sample shows the pores size varying from 10 to 50 nm. Furthermore, reflectivity measurements show that the 35% reflectivity of the starting silicon wafer drops to 0.1%, recorded for more than 10 μm long PSiNWs. Models based on cone shape of nanowires located in a circular and rectangular bases were used to calculate the reflectance employing the Transfert Matrix Formalism (TMF) of the PSiNWs layer. Using TMF, the Bruggeman model was used to calculate the refractive index of PSiNWs layer. The calculated reflectance using circular cone shape fits better the measured reflectance for PSiNWs. The remarkable decrease in optical reflectivity indicates that PSiNWs is a good antireflective layer and have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng.62(6), 175–189 (2008).
    [CrossRef]
  2. N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
    [CrossRef] [PubMed]
  3. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996).
    [CrossRef]
  4. T. L. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
    [CrossRef]
  5. A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
    [CrossRef]
  6. A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
    [CrossRef]
  7. S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
    [CrossRef]
  8. P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
    [CrossRef]
  9. K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
    [CrossRef]
  10. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
    [CrossRef] [PubMed]
  11. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  12. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
    [CrossRef] [PubMed]
  13. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
    [CrossRef] [PubMed]
  14. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
    [CrossRef]
  15. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  16. E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  17. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
    [CrossRef]
  18. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007).
    [CrossRef] [PubMed]
  19. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
    [CrossRef] [PubMed]
  20. M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
    [CrossRef]
  21. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
    [CrossRef] [PubMed]
  22. A. Najar, A. B. Slimane, M. N. Hedhili, D. H. Anjum, T. K. Ng and Boon S. Ooi, “Structural and optical properties of porous silicon nanowires prepared by metal-assisted electroless etching method - effect of HF concentration,” J. of Appl. Phys., (2012). (under reviewing)
  23. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
    [CrossRef]
  24. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Reports 29 91–93 and 95–192 (1997).
  25. T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
    [CrossRef]
  26. A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a).
    [CrossRef]

2011 (1)

T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
[CrossRef]

2009 (2)

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

2008 (6)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng.62(6), 175–189 (2008).
[CrossRef]

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a).
[CrossRef]

2007 (5)

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

2006 (1)

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

2005 (2)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
[CrossRef]

2002 (1)

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

1997 (1)

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

1996 (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996).
[CrossRef]

1990 (1)

T. L. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

1988 (1)

K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
[CrossRef]

1982 (1)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

Ajlani, H.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Andrä, G.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

Atwater, H. A.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Bakkers, E. P.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Berger, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Canham, T. L.

T. L. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

Charrier, J.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Christiansen, S.

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Christiansen, S. H.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Delibasheva, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Diebold, A. C.

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a).
[CrossRef]

Falk, F.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Fang, Y.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Fukumuro, N.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Gargas, D.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Gawlik, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Goldberger, J.

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
[CrossRef]

Goranova, E.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Gudiksen, M. S.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

Haesaert, S.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

Haji, L.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

Hochbaum, A. I.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, J. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Hwang, Y. J.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Kamenova, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Kawagishi, T.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Kempa, T. J.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kobayashi, T.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lalanne, P.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996).
[CrossRef]

Lauhon, L. J.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

Law, M.

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
[CrossRef]

Lee, S. T.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Lewis, N. S.

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Lieber, C. M.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

Lorrain, N.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

Matsuda, H.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996).
[CrossRef]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Najar, A.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

Nakato, Y.

K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
[CrossRef]

Ose, E.

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Oueslati, M.

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

Pei, T.-H.

T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
[CrossRef]

Pei, Z.

T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
[CrossRef]

Peneva, M.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Peng, K. Q.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Pietsch, M.

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Plentz, J.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Price, J.

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a).
[CrossRef]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Sivakov, V.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Stelzner, T.

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Tian, B. Z.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Tiyagu, S.

T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
[CrossRef]

Tsakalakos, L.

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng.62(6), 175–189 (2008).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Tsubomura, H.

K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
[CrossRef]

Tyutyundzhiev, N.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Ueda, K.

K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
[CrossRef]

Vitanov, P.

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

Wang, D.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

Wu, Y.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Xu, Y.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yae, S.

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Yan, Y. J.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Yang, P. D.

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
[CrossRef]

Yu, G. H.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N. F.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zheng, X. L.

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhu, J.

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res. (1)

M. Law, J. Goldberger, and P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res.34(1), 83–122 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

T.-H. Pei, S. Tiyagu, and Z. Pei, “Ultra high-density silicon nanowires for extremely low reflection in visible regime,” Appl. Phys. Lett.99(15), 153108 (2011).
[CrossRef]

T. L. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990).
[CrossRef]

A. Najar, J. Charrier, N. Lorrain, L. Haji, and M. Oueslati, “Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm,” Appl. Phys. Lett.91(12), 121120 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. D. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Mater. Sci. Eng. (1)

L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng.62(6), 175–189 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+-Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B146(1-3), 260–263 (2008).
[CrossRef]

Nano Lett. (4)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007).
[CrossRef] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett.9(10), 3550–3554 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology19(29), 295203 (2008).
[CrossRef] [PubMed]

Nature (2)

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature420(6911), 57–61 (2002).
[CrossRef] [PubMed]

B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi205(4), 896–900 (2008) (a).
[CrossRef]

Proc. SPIE (1)

P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996).
[CrossRef]

Science (1)

N. S. Lewis, “Toward cost-effective solar energy use,” Science315(5813), 798–801 (2007).
[CrossRef] [PubMed]

Small (1)

K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005).
[CrossRef] [PubMed]

Sol. Energy (1)

S. Yae, T. Kobayashi, T. Kawagishi, N. Fukumuro, and H. Matsuda, “Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching,” Sol. Energy80(6), 701–706 (2006).
[CrossRef]

Sol. Energy Mater. (1)

K. Ueda, Y. Nakato, and H. Tsubomura, “Efficient and stable solar to chemical conversion with n+-p junction crystalline silicon electrodes having textured surfaces,” Sol. Energy Mater.17(1), 37–46 (1988).
[CrossRef]

Thin Solid Films (2)

P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, “High-efficiency solar cell using a thin porous silicon layer,” Thin Solid Films297(1-2), 299–303 (1997).
[CrossRef]

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

Other (2)

W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Reports 29 91–93 and 95–192 (1997).

A. Najar, A. B. Slimane, M. N. Hedhili, D. H. Anjum, T. K. Ng and Boon S. Ooi, “Structural and optical properties of porous silicon nanowires prepared by metal-assisted electroless etching method - effect of HF concentration,” J. of Appl. Phys., (2012). (under reviewing)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) cross-section SEM micrograph of PSiNWs etched for 75 min, (b) top view micrograph of PSiNWs, (c) TEM image of individual nanowire and inset the FFT image, and (d) variation of the nanowires length as a function of etching time 45 min, 75 min, 120 min, 195 min and 460 min.

Fig. 2
Fig. 2

(a), (b), and (c) represent three longitudinal slices extracted from the volume reconstruction of the PSiNW nanostructures revealing an area of highly porous medium. The bare scale is 50 nm.

Fig. 3
Fig. 3

Evolution of refractive index of SiNW layer as a function of the wavelength. The refractive index measured by m-lines at 1550 nm was equal to 2.18 ± 0.2 corresponding to a porosity of 48% by using Bruggeman model.

Fig. 4
Fig. 4

Experimental spectra of PSiNW samples of different thickness (10 µm, 13 µm, 28 µm, and 31 µm). Inset: theoretical reflectance spectra of porous silicon layer (thickness equal to 10 µm) on Si substrate and Si substrate.

Fig. 5
Fig. 5

Schematic representation of SiNWs and effective mulitlayer structure with cone shape and TEM image showing the cone shape.

Fig. 6
Fig. 6

(a) Theoretical reflectance spectra of SiNWs on silicon substrate for different layer thicknesses (0.5, 1, 5 and 10 µm) by considering cone shape and circular base, (b) Zoom of theoretical reflectance spectra of SiNWs, (c) Evolution of porosity as a function of thickness by using cone shape and circular base.

Fig. 7
Fig. 7

(a) Theoretical reflectance spectra of SiNWs on silicon substrate for different layer thicknesses (0.5, 1, 5 and 10 µm) by considering cone shape and rectangular base, (b) Zoom of theoretical reflectance spectra of SiNWs, (c) Evolution of porosity as a function of thickness by using cone shape and rectangular base.

Fig. 8
Fig. 8

Experimental reflectance spectra and theoretical reflectance spectra using the conic model with circular base and rectangular base for the different thicknesses of samples (10 µm, 13 µm, 28 µm, and 31 µm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ T ]=[ I air, n eff,1 ]( i=1 n1 [ M n eff,i ][ I n eff,i; n eff,i+1 ] )[ M n eff,n ][ I n eff,n; Si ].
[ T ]=[ T 11 T 12 T 21 T 22 ].
R PSiNW = | T 21 T 11 | 2 .
f Si ε Si ε ε Si +2ε + f air ε air ε ε air +2ε =0.

Metrics