Abstract

In this paper we investigate uncorrelated noise from spontaneous Raman scattering (SpRS) and its effect on photon-pair generation in chalcogenide (As2S3). We measure a coincidence-to-accidental ratio (CAR) of 4.2 in a 7 cm As2S3 single-mode fiber, with enhancements from our previous result attributed to pulsed pumping and cooling. Using an analytical model we characterize the magnitude of the SpRS at different temperatures. Our analysis shows that even after cooling to liquid nitrogen temperature (77 K), SpRS is still significant. For large detunings from the pump, the dependence on temperature for the Stokes SpRS intensity becomes negligible, so cooling is not a complete solution to improve the quality of the photon source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  2. S. Prawer and A. D. Greentree, “Applied physics. Diamond for quantum computing,” Science 320(5883), 1601–1602 (2008).
    [CrossRef] [PubMed]
  3. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
    [CrossRef]
  4. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
    [CrossRef] [PubMed]
  5. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
    [CrossRef]
  6. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
    [CrossRef] [PubMed]
  7. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17(26), 23589–23602 (2009).
    [CrossRef] [PubMed]
  8. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004).
    [CrossRef] [PubMed]
  9. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
    [CrossRef]
  10. A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
    [CrossRef]
  11. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
    [CrossRef] [PubMed]
  12. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
    [CrossRef] [PubMed]
  13. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
    [CrossRef]
  14. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [CrossRef] [PubMed]
  15. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [CrossRef] [PubMed]
  16. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  17. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).
  18. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [CrossRef] [PubMed]
  19. C. Xiong, E. Mägi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [CrossRef] [PubMed]
  20. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
    [CrossRef]
  21. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
    [CrossRef]

2011 (4)

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

2010 (2)

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

2006 (2)

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

2005 (1)

2004 (2)

2002 (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

1973 (1)

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Aggarwal, I. D.

Alibart, O.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Baek, B.

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Bell, B.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

Cemlyn, B.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

Chen, J.

Choi, D.-Y.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Clark, A.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

Clark, A. S.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

Cohen, O.

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Dekker, S.

Dorenbos, S. N.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Dyer, S. D.

Eggleton, B. J.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

C. Xiong, E. Mägi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Foster, M. A.

Fu, L. B.

Fukuda, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Fulconis, J.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Gaeta, A. L.

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Greentree, A. D.

S. Prawer and A. D. Greentree, “Applied physics. Diamond for quantum computing,” Science 320(5883), 1601–1602 (2008).
[CrossRef] [PubMed]

Grillet, C.

Hadfield, R. H.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Halder, M.

Halder, M. M.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

Harada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

Helt, L. G.

Inoue, K.

Itabashi, S.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Judge, A. C.

Kobliska, R. J.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Krauss, T. F.

Kumar, P.

Lamont, M. R.

Lee, K. F.

Li, J.

Li, X.

Lipson, M.

Lobino, M.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Luan, F.

Lundeen, J. S.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Madden, S. J.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Mägi, E.

Mägi, E. C.

Mahou, P.

Marshall, G. D.

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

McMillan, A. R.

Monat, C.

Murdoch, S. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Nam, S. W.

Natarajan, C. M.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Nguyen, H. C.

O’Brien, J. L.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

O’Faolain, L.

Ostrowski, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Peruzzo, A.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Prawer, S.

S. Prawer and A. D. Greentree, “Applied physics. Diamond for quantum computing,” Science 320(5883), 1601–1602 (2008).
[CrossRef] [PubMed]

Rarity, J. G.

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).

Sanghera, J. S.

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Schmidt, B. S.

Sharping, J.

Sharping, J. E.

Shaw, L. B.

Sipe, J. E.

Smith, B. J.

Solin, S. A.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Steel, M. J.

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

Stevens, M. J.

Takesue, H.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

Tanner, M. G.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Thompson, M. G.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Tokura, Y.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Tsuchizawa, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Tuniz, A.

Turner, A. C.

Voss, P.

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Wadsworth, W. J.

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Walmsley, I. A.

Watanabe, T.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Windeler, R.

Wong, G. K. L.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

Xiong, C.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

C. Xiong, E. Mägi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

Yamada, K.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Yeom, D. I.

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zijlstra, T.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Zwiller, V.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141–148 (2011).

New J. Phys. (2)

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8(5), 67 (2006).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13(6), 065009 (2011).
[CrossRef]

Opt. Express (9)

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17(26), 23589–23602 (2009).
[CrossRef] [PubMed]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Phys. Rev. Lett. (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Science (1)

S. Prawer and A. D. Greentree, “Applied physics. Diamond for quantum computing,” Science 320(5883), 1601–1602 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic of spontaneous four-wave mixing (SFWM) to generate correlated pairs of photons, (b) a schematic of spontaneous Raman scattering generating an uncorrelated noise photon and a phonon shown as a red arrow and (c) a schematic of the experimental setup. An attenuator (ATT), band-pass filter (TBPF), and polarization controller (PC) condition the pump pulses before coupling into the 7 cm As2S3 fiber, where correlated photon pairs are generated through SFWM. The fiber can be placed at room temperature or cooled to 77 K in a liquid nitrogen bath. The output is fed into a circulator and a fiber Bragg grating (FBG) to block and reject the pump. An arrayed waveguide grating (AWG) separates pair photons, followed by tuneable band-pass filters to further isolate pump noise. Single photon detectors (SPD1 and SPD2) detect the photons, synchronized to the pump laser by an electrical delay generator (DG). Coincidences are measured using a computer controlled time interval analyser (TIA).

Fig. 2
Fig. 2

The coincidence to accidental ratio (CAR) is the ratio of correlated events to the system noise, measured at room temperature (black squares) and at 77 K (red circles) both with a signal and idler detuning of 700 GHz. Red lines represent fits to the data as described in the text. Errors are calculated from Poissonian statistics.

Fig. 3
Fig. 3

SpRS intensity with respect to detuning from the pump frequency at room temperature (293 K, red line) and at liquid nitrogen temperature (77 K, blue line). The green shaded region signifies the photon channel detuning used in this work and the purple shaded region shows the low-Raman window in As2S3 glass.

Fig. 4
Fig. 4

Calculated ratio between the number of SpRS noise photons at room temperature (NRoom Temp) and 77 K (N77K), showing the impact of cooling reduces as detuning from the pump frequency increases. The green region corresponds to the detuning used here, whilst the purple region shows the low-Raman region.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CAR= η s η i μ [ ( η s ( μ+ μ Ns )+ D s )( η i ( μ+ μ Ni )+ D i ) ] .
N SpRS (ν,T)=8 π 3 Δν P 0 Lg(ν)[ 1+n(ν,T) ] ν Stokes 4 ν .
n(ν,T)= 1 e hν k B T 1 .

Metrics